IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v49y2011i3p410-417.html
   My bibliography  Save this article

A characterization of the multivariate excess wealth ordering

Author

Listed:
  • Fernández-Ponce, J.M.
  • Pellerey, F.
  • Rodríguez-Griñolo, M.R.

Abstract

In this paper, some new properties of the upper-corrected orthant of a random vector are proved. The univariate right-spread or excess wealth function, introduced by Fernández-Ponce et al. (1996), is extended to multivariate random vectors, and some properties of this multivariate function are studied. Later, this function was used to define the excess wealth ordering by Shaked and Shanthikumar (1998) and Fernández-Ponce et al. (1998). The multivariate excess wealth function enable us to define a new stochastic comparison which is weaker than the multivariate dispersion orderings. Also, some properties relating the multivariate excess wealth order with stochastic dependence are described.

Suggested Citation

  • Fernández-Ponce, J.M. & Pellerey, F. & Rodríguez-Griñolo, M.R., 2011. "A characterization of the multivariate excess wealth ordering," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 410-417.
  • Handle: RePEc:eee:insuma:v:49:y:2011:i:3:p:410-417
    DOI: 10.1016/j.insmatheco.2011.07.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668711000783
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2011.07.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elja Arjas & Tapani Lehtonen, 1978. "Approximating Many Server Queues by Means of Single Server Queues," Mathematics of Operations Research, INFORMS, vol. 3(3), pages 205-223, August.
    2. Li, Haijun & Scarsini, Marco & Shaked, Moshe, 1996. "Linkages: A Tool for the Construction of Multivariate Distributions with Given Nonoverlapping Multivariate Marginals," Journal of Multivariate Analysis, Elsevier, vol. 56(1), pages 20-41, January.
    3. Kochar, Subhash C., 1996. "Dispersive ordering of order statistics," Statistics & Probability Letters, Elsevier, vol. 27(3), pages 271-274, April.
    4. Marco Scarsini & Alfred Muller, 2001. "Stochastic comparison of random vectors with a common copula," Post-Print hal-00540198, HAL.
    5. Reuven Y. Rubinstein & Gennady Samorodnitsky & Moshe Shaked, 1985. "Antithetic Variates, Multivariate Dependence and Simulation of Stochastic Systems," Management Science, INFORMS, vol. 31(1), pages 66-77, January.
    6. Kochar, Subhash C. & Carrière, K. C., 1997. "Connections among various variability orderings," Statistics & Probability Letters, Elsevier, vol. 35(4), pages 327-333, November.
    7. Alfred Müller & Marco Scarsini, 2001. "Stochastic Comparison of Random Vectors with a Common Copula," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 723-740, November.
    8. Bartoszewicz, Jaroslaw, 1995. "Stochastic order relations and the total time on test transform," Statistics & Probability Letters, Elsevier, vol. 22(2), pages 103-110, February.
    9. Martin A. Lariviere, 2006. "A Note on Probability Distributions with Increasing Generalized Failure Rates," Operations Research, INFORMS, vol. 54(3), pages 602-604, June.
    10. Pellerey, Franco & Shaked, Moshe, 1997. "Characterizations of the IFR and DFR aging notions by means of the dispersive order," Statistics & Probability Letters, Elsevier, vol. 33(4), pages 389-393, May.
    11. Subhash C. Kochar & Douglas P. Wiens, 1987. "Partial orderings of life distributions with respect to their aging properties," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(6), pages 823-829, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cai, Jun & Wei, Wei, 2012. "On the invariant properties of notions of positive dependence and copulas under increasing transformations," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 43-49.
    2. Ortega-Jiménez, Patricia & Pellerey, Franco & Sordo, Miguel A. & Suárez-Llorens, Alfonso, 2024. "Probability equivalent level for CoVaR and VaR," Insurance: Mathematics and Economics, Elsevier, vol. 115(C), pages 22-35.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belzunce, Félix & Ruiz, José M. & Suárez-Llorens, Alfonso, 2008. "On multivariate dispersion orderings based on the standard construction," Statistics & Probability Letters, Elsevier, vol. 78(3), pages 271-281, February.
    2. Sordo, Miguel A. & Suárez-Llorens, Alfonso & Bello, Alfonso J., 2015. "Comparison of conditional distributions in portfolios of dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 62-69.
    3. Boonen, Tim J. & Liu, Fangda, 2022. "Insurance with heterogeneous preferences," Journal of Mathematical Economics, Elsevier, vol. 102(C).
    4. Xiaohu Li & Ming J. Zuo, 2004. "Preservation of stochastic orders for random minima and maxima, with applications," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(3), pages 332-344, April.
    5. López-Díaz, María Concepción & López-Díaz, Miguel, 2013. "A note on the family of extremality stochastic orders," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 230-236.
    6. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    7. Donald C., Rudow, 2005. "Preferences and Increased Risk Aversion under a General Framework of Stochastic Dominance," MPRA Paper 41191, University Library of Munich, Germany, revised 07 Jun 2005.
    8. Marcello Basili & Paulo Casaca & Alain Chateauneuf & Maurizio Franzini, 2017. "Multidimensional Pigou–Dalton transfers and social evaluation functions," Theory and Decision, Springer, vol. 83(4), pages 573-590, December.
    9. Ansari, Jonathan & Rüschendorf, Ludger, 2021. "Ordering results for elliptical distributions with applications to risk bounds," Journal of Multivariate Analysis, Elsevier, vol. 182(C).
    10. Francesco Andreoli & Claudio Zoli, 2020. "From unidimensional to multidimensional inequality: a review," METRON, Springer;Sapienza Università di Roma, vol. 78(1), pages 5-42, April.
    11. Castaño-Martínez, A. & Pigueiras, G. & Sordo, M.A., 2019. "On a family of risk measures based on largest claims," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 92-97.
    12. Chenguang (Allen) Wu & Achal Bassamboo & Ohad Perry, 2019. "Service System with Dependent Service and Patience Times," Management Science, INFORMS, vol. 65(3), pages 1151-1172, March.
    13. Müller, Alfred & Scarsini, Marco, 2005. "Archimedean copulæ and positive dependence," Journal of Multivariate Analysis, Elsevier, vol. 93(2), pages 434-445, April.
    14. Xu Guo & Andreas Wagener & Wing-Keung Wong & Lixing Zhu, 2018. "The two-moment decision model with additive risks," Risk Management, Palgrave Macmillan, vol. 20(1), pages 77-94, February.
    15. Sordo, Miguel A., 2016. "A multivariate extension of the increasing convex order to compare risks," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 224-230.
    16. Belzunce, Félix & Suárez-Llorens, Alfonso & Sordo, Miguel A., 2012. "Comparison of increasing directionally convex transformations of random vectors with a common copula," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 385-390.
    17. Szego, Giorgio, 2005. "Measures of risk," European Journal of Operational Research, Elsevier, vol. 163(1), pages 5-19, May.
    18. Bäuerle, Nicole & Glauner, Alexander, 2018. "Optimal risk allocation in reinsurance networks," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 37-47.
    19. Fernández-Ponce, J.M. & Rodríguez-Griñolo, R., 2006. "Preserving multivariate dispersion: An application to the Wishart distribution," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1208-1220, May.
    20. Amiri, Mehdi & Izadkhah, Salman & Jamalizadeh, Ahad, 2020. "Linear orderings of the scale mixtures of the multivariate skew-normal distribution," Journal of Multivariate Analysis, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:49:y:2011:i:3:p:410-417. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.