IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v79y2016i6d10.1007_s00184-015-0573-5.html
   My bibliography  Save this article

Likelihood ratio order of parallel systems with heterogeneous Weibull components

Author

Listed:
  • Longxiang Fang

    (Anhui Normal University)

  • N. Balakrishnan

    (McMaster University)

Abstract

In this paper, we compare the largest order statistics arising from independent heterogeneous Weibull random variables based on the likelihood ratio order. Let $$X_{1},\ldots ,X_{n}$$ X 1 , … , X n be independent Weibull random variables with $$X_{i}$$ X i having shape parameter $$0

Suggested Citation

  • Longxiang Fang & N. Balakrishnan, 2016. "Likelihood ratio order of parallel systems with heterogeneous Weibull components," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(6), pages 693-703, August.
  • Handle: RePEc:spr:metrik:v:79:y:2016:i:6:d:10.1007_s00184-015-0573-5
    DOI: 10.1007/s00184-015-0573-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-015-0573-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-015-0573-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rojo, Javier & He, Guo Zhong, 1991. "New properties and characterizations of the dispersive ordering," Statistics & Probability Letters, Elsevier, vol. 11(4), pages 365-372, April.
    2. Zhao, Peng & Balakrishnan, N., 2014. "A stochastic inequality for the largest order statistics from heterogeneous gamma variables," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 145-150.
    3. Fang, Longxiang & Zhang, Xinsheng, 2013. "Stochastic comparisons of series systems with heterogeneous Weibull components," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1649-1653.
    4. Kochar, Subhash & Ma, Chunsheng, 1999. "Dispersive ordering of convolutions of exponential random variables," Statistics & Probability Letters, Elsevier, vol. 43(3), pages 321-324, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luigi-Ionut Catana & Vasile Preda, 2022. "A New Stochastic Order of Multivariate Distributions: Application in the Study of Reliability of Bridges Affected by Earthquakes," Mathematics, MDPI, vol. 11(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Longxiang & Zhang, Xinsheng, 2013. "Stochastic comparisons of series systems with heterogeneous Weibull components," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1649-1653.
    2. Jongwoo Jeon & Subhash Kochar & Chul Park, 2006. "Dispersive ordering—Some applications and examples," Statistical Papers, Springer, vol. 47(2), pages 227-247, March.
    3. Lihong, Sun & Xinsheng, Zhang, 2005. "Stochastic comparisons of order statistics from gamma distributions," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 112-121, March.
    4. Li, Chen & Li, Xiaohu, 2015. "Likelihood ratio order of sample minimum from heterogeneous Weibull random variables," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 46-53.
    5. Ebrahimi, Nader & Kirmani, S. N. U. A., 1996. "Some results on ordering of survival functions through uncertainty," Statistics & Probability Letters, Elsevier, vol. 29(2), pages 167-176, August.
    6. Carlos Carleos & Miguel López-Díaz, 2010. "A new family of dispersive orderings," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(2), pages 203-217, March.
    7. Ayala, Guillermo & López-Díaz, Miguel, 2009. "The simplex dispersion ordering and its application to the evaluation of human corneal endothelia," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1447-1464, August.
    8. Zhao, Peng & Balakrishnan, N., 2009. "Likelihood ratio ordering of convolutions of heterogeneous exponential and geometric random variables," Statistics & Probability Letters, Elsevier, vol. 79(15), pages 1717-1723, August.
    9. Belzunce, Félix & Ruiz, José M. & Suárez-Llorens, Alfonso, 2008. "On multivariate dispersion orderings based on the standard construction," Statistics & Probability Letters, Elsevier, vol. 78(3), pages 271-281, February.
    10. Mesfioui Mhamed & Trufin Julien, 2021. "Dispersive order comparisons on extreme order statistics from homogeneous dependent random vectors," Dependence Modeling, De Gruyter, vol. 9(1), pages 385-393, January.
    11. Junrui Wang & Rongfang Yan & Bin Lu, 2020. "Stochastic Comparisons of Parallel and Series Systems with Type II Half Logistic-Resilience Scale Components," Mathematics, MDPI, vol. 8(4), pages 1-18, March.
    12. Zhao, Peng, 2011. "Some new results on convolutions of heterogeneous gamma random variables," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 958-976, May.
    13. Sordo, Miguel A., 2009. "Comparing tail variabilities of risks by means of the excess wealth order," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 466-469, December.
    14. Fernández-Ponce, J.M. & Rodríguez-Griñolo, R., 2006. "Preserving multivariate dispersion: An application to the Wishart distribution," Journal of Multivariate Analysis, Elsevier, vol. 97(5), pages 1208-1220, May.
    15. Giovagnoli, Alessandra & Wynn, H. P., 1995. "Multivariate dispersion orderings," Statistics & Probability Letters, Elsevier, vol. 22(4), pages 325-332, March.
    16. López-Díaz, Miguel, 2010. "Some remarks on Lp dispersion orderings," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 413-420, March.
    17. Zhao, Peng & Balakrishnan, N., 2009. "Mean residual life order of convolutions of heterogeneous exponential random variables," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1792-1801, September.
    18. López-Díaz, Miguel, 2006. "An indexed multivariate dispersion ordering based on the Hausdorff distance," Journal of Multivariate Analysis, Elsevier, vol. 97(7), pages 1623-1637, August.
    19. Zhao, Peng & Balakrishnan, N., 2010. "Ordering properties of convolutions of heterogeneous Erlang and Pascal random variables," Statistics & Probability Letters, Elsevier, vol. 80(11-12), pages 969-974, June.
    20. M. Mesfioui & M. Kayid & S. Izadkhah, 2017. "Stochastic comparisons of order statistics from heterogeneous random variables with Archimedean copula," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 749-766, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:79:y:2016:i:6:d:10.1007_s00184-015-0573-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.