IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v79y2016i5d10.1007_s00184-015-0566-4.html
   My bibliography  Save this article

Single change-point detection methods for small lifetime samples

Author

Listed:
  • Narayanaswamy Balakrishnan

    (McMaster University)

  • Laurent Bordes

    (Université de Pau et des Pays de l’Adour)

  • Christian Paroissin

    (Université de Pau et des Pays de l’Adour)

  • Jean-Christophe Turlot

    (Université de Pau et des Pays de l’Adour)

Abstract

In this paper, we address the problem of deciding if either n consecutive independent failure times have the same failure rate or if there exists some $$k\in \{1,\ldots ,n\}$$ k ∈ { 1 , … , n } such that the common failure rate of the first k failure times is different from the common failure rate of the last $$n-k$$ n - k failure times, based on an exponential lifetime distribution. The statistical test we propose is based on the empirical average ratio under the assumption of exponentiality. The proposed test is compared to the one based on the Mann–Whitney statistic for which no parametric assumption on the underlying distribution is necessary. The proposed statistics are free of the unknown underlying distribution under the null hypothesis of homogeneity of the n failure times which enables the determination of critical values of the proposed tests by Monte Carlo methods for small sample sizes.

Suggested Citation

  • Narayanaswamy Balakrishnan & Laurent Bordes & Christian Paroissin & Jean-Christophe Turlot, 2016. "Single change-point detection methods for small lifetime samples," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 79(5), pages 531-551, July.
  • Handle: RePEc:spr:metrik:v:79:y:2016:i:5:d:10.1007_s00184-015-0566-4
    DOI: 10.1007/s00184-015-0566-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-015-0566-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-015-0566-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Einmahl, J.H.J. & McKeague, I.W., 2002. "Empirical Likelihood based on Hypothesis Testing," Other publications TiSEM 402576fa-8c0e-45e2-a394-8, Tilburg University, School of Economics and Management.
    2. Ashish Sen & S. Srivastava, 1975. "On tests for detecting change in mean when variance is unknown," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 27(1), pages 479-486, December.
    3. Zou, Changliang & Liu, Yukun & Qin, Peng & Wang, Zhaojun, 2007. "Empirical likelihood ratio test for the change-point problem," Statistics & Probability Letters, Elsevier, vol. 77(4), pages 374-382, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    2. Shen, Gang, 2013. "On empirical likelihood inference of a change-point," Statistics & Probability Letters, Elsevier, vol. 83(7), pages 1662-1668.
    3. Wei Ning, 2012. "Empirical likelihood ratio test for a mean change point model with a linear trend followed by an abrupt change," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(5), pages 947-961, September.
    4. Otsu, Taisuke & Xu, Ke-Li & Matsushita, Yukitoshi, 2015. "Empirical likelihood for regression discontinuity design," Journal of Econometrics, Elsevier, vol. 186(1), pages 94-112.
    5. Karun Adusumilli & Taisuke Otsu, 2017. "Empirical Likelihood for Random Sets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1064-1075, July.
    6. repec:cep:stiecm:/2014/574 is not listed on IDEAS
    7. Joseph Ngatchou-Wandji & Echarif Elharfaoui & Michel Harel, 2022. "On change-points tests based on two-samples U-Statistics for weakly dependent observations," Statistical Papers, Springer, vol. 63(1), pages 287-316, February.
    8. Zou, Changliang & Liu, Yukun & Qin, Peng & Wang, Zhaojun, 2007. "Empirical likelihood ratio test for the change-point problem," Statistics & Probability Letters, Elsevier, vol. 77(4), pages 374-382, February.
    9. John Einmahl & Maria Gantner, 2012. "Testing for bivariate spherical symmetry," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 54-73, March.
    10. Li, Boyan & Diao, Xundi, 2023. "Structural break in different stock index markets in China," The North American Journal of Economics and Finance, Elsevier, vol. 65(C).
    11. Fuqi Chen & Rogemar Mamon & Sévérien Nkurunziza, 2018. "Inference for a change-point problem under a generalised Ornstein–Uhlenbeck setting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 807-853, August.
    12. Sandip Sinharay, 2017. "Some Remarks on Applications of Tests for Detecting A Change Point to Psychometric Problems," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1149-1161, December.
    13. Minya Xu & Ping-Shou Zhong & Wei Wang, 2016. "Detecting Variance Change-Points for Blocked Time Series and Dependent Panel Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 213-226, April.
    14. Hammou El Barmi & Lahcen El Bermi, 2013. "Empirical likelihood ratio test for symmetry against type I bias with applications to competing risks," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 487-498, June.
    15. Rodríguez-Martínez, C.M. & Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2021. "A multi-scale symmetry analysis of uninterrupted trends returns in daily financial indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    16. Jon Vilasuso, 1996. "Changes in the duration of economic expansions and contractions in the United States," Applied Economics Letters, Taylor & Francis Journals, vol. 3(12), pages 803-806.
    17. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    18. Cai, Xia & Tian, Yubin & Ning, Wei, 2019. "Change-point analysis of the failure mechanisms based on accelerated life tests," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 515-522.
    19. Xia Cai & Khamis Khalid Said & Wei Ning, 2016. "Change-point analysis with bathtub shape for the exponential distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(15), pages 2740-2750, November.
    20. Jean-François Quessy, 2019. "Consistent nonparametric tests for detecting gradual changes in the marginals and the copula of multivariate time series," Statistical Papers, Springer, vol. 60(3), pages 717-746, June.
    21. Pedro André Cerqueira, 2014. "Business Cycle Synchronization and Volatility Shifts," GEMF Working Papers 2014-19, GEMF, Faculty of Economics, University of Coimbra.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:79:y:2016:i:5:d:10.1007_s00184-015-0566-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.