IDEAS home Printed from https://ideas.repec.org/a/taf/jnlbes/v34y2016i2p213-226.html
   My bibliography  Save this article

Detecting Variance Change-Points for Blocked Time Series and Dependent Panel Data

Author

Listed:
  • Minya Xu
  • Ping-Shou Zhong
  • Wei Wang

Abstract

This article proposes a class of weighted differences of averages (WDA) statistics to test and estimate possible change-points in variance for time series with weakly dependent blocks and dependent panel data without specific distributional assumptions. We derive the asymptotic distributions of the test statistics for testing the existence of a single variance change-point under the null and local alternatives. We also study the consistency of the change-point estimator. Within the proposed class of the WDA test statistics, a standardized WDA test is shown to have the best consistency rate and is recommended for practical use. An iterative binary searching procedure is suggested for estimating the locations of possible multiple change-points in variance, whose consistency is also established. Simulation studies are conducted to compare detection power and number of wrong rejections of the proposed procedure to that of a cumulative sum (CUSUM) based test and a likelihood ratio-based test. Finally, we apply the proposed method to a stock index dataset and an unemployment rate dataset. Supplementary materials for this article are available online.

Suggested Citation

  • Minya Xu & Ping-Shou Zhong & Wei Wang, 2016. "Detecting Variance Change-Points for Blocked Time Series and Dependent Panel Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 213-226, April.
  • Handle: RePEc:taf:jnlbes:v:34:y:2016:i:2:p:213-226
    DOI: 10.1080/07350015.2015.1026438
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07350015.2015.1026438
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07350015.2015.1026438?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Connor, Gregory & Korajczyk, Robert A, 1993. "A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-1291, September.
    2. Badi H. Baltagi & Chihwa Kao & Long Liu, 2012. "On the Estimation and Testing of Fixed Effects Panel Data Models with Weak Instruments," Advances in Econometrics, in: 30th Anniversary Edition, pages 199-235, Emerald Group Publishing Limited.
    3. Sangyeol Lee & Siyun Park, 2001. "The Cusum of Squares Test for Scale Changes in Infinite Order Moving Average Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(4), pages 625-644, December.
    4. D. A. Hsu, 1977. "Tests for Variance Shift at an Unknown Time Point," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(3), pages 279-284, November.
    5. Han, Dong & Tsung, Fugee, 2006. "A Reference-Free Cuscore Chart for Dynamic Mean Change Detection and a Unified Framework for Charting Performance Comparison," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 368-386, March.
    6. Bai, Jushan, 2010. "Common breaks in means and variances for panel data," Journal of Econometrics, Elsevier, vol. 157(1), pages 78-92, July.
    7. Xu, Ke-Li, 2013. "Power monotonicity in detecting volatility levels change," Economics Letters, Elsevier, vol. 121(1), pages 64-69.
    8. David E. Rapach & Jack K. Strauss, 2008. "Structural breaks and GARCH models of exchange rate volatility," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(1), pages 65-90.
    9. Haipeng Xing & Zhiliang Ying, 2012. "A Semiparametric Change-Point Regression Model for Longitudinal Observations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1625-1637, December.
    10. Lawrence Joseph & David Wolfson, 1993. "Maximum likelihood estimation in the multi-path change-point problem," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 45(3), pages 511-530, September.
    11. Ashish Sen & S. Srivastava, 1975. "On tests for detecting change in mean when variance is unknown," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 27(1), pages 479-486, December.
    12. Booth, N.B. & Smith, A.F.M., 1982. "A Bayesian approach to retrospective identification of change-points," Journal of Econometrics, Elsevier, vol. 19(1), pages 7-22, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ping‐Shou Zhong, 2023. "Homogeneity tests of covariance for high‐dimensional functional data with applications to event segmentation," Biometrics, The International Biometric Society, vol. 79(4), pages 3332-3344, December.
    2. Jialiang Li & Yaguang Li & Tailen Hsing, 2022. "On functional processes with multiple discontinuities," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 933-972, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minyoung Jo & Sangyeol Lee, 2021. "On CUSUM test for dynamic panel models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(2), pages 515-542, June.
    2. Galeano, Pedro, 2004. "Variance changes detection in multivariate time series," DES - Working Papers. Statistics and Econometrics. WS ws041305, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Ewing, Bradley T. & Malik, Farooq, 2016. "Volatility spillovers between oil prices and the stock market under structural breaks," Global Finance Journal, Elsevier, vol. 29(C), pages 12-23.
    4. Hui Hong & Zhicun Bian & Chien-Chiang Lee, 2021. "COVID-19 and instability of stock market performance: evidence from the U.S," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-18, December.
    5. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    6. Venkata Jandhyala & Stergios Fotopoulos & Ian MacNeill & Pengyu Liu, 2013. "Inference for single and multiple change-points in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(4), pages 423-446, July.
    7. Philip Preuss & Ruprecht Puchstein & Holger Dette, 2015. "Detection of Multiple Structural Breaks in Multivariate Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 654-668, June.
    8. Haoran Lu & Dianpeng Wang, 2024. "Grouped Change-Points Detection and Estimation in Panel Data," Mathematics, MDPI, vol. 12(5), pages 1-20, March.
    9. Cheng, Tsung-Lin, 2009. "An efficient algorithm for estimating a change-point," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 559-565, March.
    10. Xu, Ke-Li, 2013. "Powerful tests for structural changes in volatility," Journal of Econometrics, Elsevier, vol. 173(1), pages 126-142.
    11. David McMillan & Mark Wohar, 2011. "Structural breaks in volatility: the case of UK sector returns," Applied Financial Economics, Taylor & Francis Journals, vol. 21(15), pages 1079-1093.
    12. Vivian, Andrew & Wohar, Mark E., 2012. "Commodity volatility breaks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(2), pages 395-422.
    13. Gebka, Bartosz & Wohar, Mark E., 2013. "Causality between trading volume and returns: Evidence from quantile regressions," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 144-159.
    14. Ewing, Bradley T. & Malik, Farooq, 2013. "Volatility transmission between gold and oil futures under structural breaks," International Review of Economics & Finance, Elsevier, vol. 25(C), pages 113-121.
    15. de Pooter, M.D. & van Dijk, D.J.C., 2004. "Testing for changes in volatility in heteroskedastic time series - a further examination," Econometric Institute Research Papers EI 2004-38, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Li, Fuxiao & Tian, Zheng & Xiao, Yanting & Chen, Zhanshou, 2015. "Variance change-point detection in panel data models," Economics Letters, Elsevier, vol. 126(C), pages 140-143.
    17. Zhuoheng Chen & Yijun Hu, 2017. "Cumulative sum estimator for change-point in panel data," Statistical Papers, Springer, vol. 58(3), pages 707-728, September.
    18. Hillebrand, Eric & Schnabl, Gunther & Ulu, Yasemin, 2009. "Japanese foreign exchange intervention and the yen-to-dollar exchange rate: A simultaneous equations approach using realized volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 19(3), pages 490-505, July.
    19. GUO-FITOUSSI, Liang, 2013. "A Comparison of the Finite Sample Properties of Selection Rules of Factor Numbers in Large Datasets," MPRA Paper 50005, University Library of Munich, Germany.
    20. Claudio Morana, 2014. "Factor Vector Autoregressive Estimation of Heteroskedastic Persistent and Non Persistent Processes Subject to Structural Breaks," Working Papers 273, University of Milano-Bicocca, Department of Economics, revised May 2014.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlbes:v:34:y:2016:i:2:p:213-226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UBES20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.