IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v78y2015i6p635-646.html
   My bibliography  Save this article

Universal surrogate likelihood functions for nonnegative continuous data

Author

Listed:
  • Tsung-Shan Tsou
  • Chi-Chuan Yang

Abstract

In independent and identically distributed situations, we show that one can properly correct the Poisson and the negative binomial likelihood functions to become asymptotically identical to the profile likelihood function for the mean parameter of nonnegative continuous distributions under mild conditions. We present theoretical justifications and use data analyses to demonstrate the merit of our new robust likelihood method. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Tsung-Shan Tsou & Chi-Chuan Yang, 2015. "Universal surrogate likelihood functions for nonnegative continuous data," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(6), pages 635-646, August.
  • Handle: RePEc:spr:metrik:v:78:y:2015:i:6:p:635-646
    DOI: 10.1007/s00184-014-0519-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-014-0519-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-014-0519-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richard Royall & Tsung‐Shan Tsou, 2003. "Interpreting statistical evidence by using imperfect models: robust adjusted likelihood functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 391-404, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
    2. Zhiwei Zhang, 2010. "Profile Likelihood and Incomplete Data," International Statistical Review, International Statistical Institute, vol. 78(1), pages 102-116, April.
    3. George Karabatsos, 2023. "Approximate Bayesian computation using asymptotically normal point estimates," Computational Statistics, Springer, vol. 38(2), pages 531-568, June.
    4. Tsung-Shan Tsou, 2005. "Inferences of variance function - a parametric robust way," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(8), pages 785-796.
    5. Shen, Chung-Wei & Tsou, Tsung-Shan & Balakrishnan, N., 2011. "Robust likelihood inference for regression parameters in partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 55(4), pages 1696-1714, April.
    6. Lemonte, Artur J., 2013. "On the gradient statistic under model misspecification," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 390-398.
    7. Hoch, Jeffrey S. & Blume, Jeffrey D., 2008. "Measuring and illustrating statistical evidence in a cost-effectiveness analysis," Journal of Health Economics, Elsevier, vol. 27(2), pages 476-495, March.
    8. John Copas & Shinto Eguchi, 2010. "Likelihood for statistically equivalent models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(2), pages 193-217, March.
    9. Caterina Conigliani & Andrea Tancredi, 2009. "A Bayesian model averaging approach for cost‐effectiveness analyses," Health Economics, John Wiley & Sons, Ltd., vol. 18(7), pages 807-821, July.
    10. Tsung-Shan Tsou, 2011. "Likelihood inferences for the link function without knowing the true underlying distributions," Computational Statistics, Springer, vol. 26(3), pages 507-519, September.
    11. Li-Chu Chien, 2011. "A robust diagnostic plot for explanatory variables under model mis-specification," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(1), pages 113-126.
    12. Caterina Conigliani & Andrea Tancredi, 2006. "Comparing parametric and semi-parametric approaches for bayesian cost-effectiveness analyses in health economics," Departmental Working Papers of Economics - University 'Roma Tre' 0064, Department of Economics - University Roma Tre.
    13. Simon Vandekar & Ran Tao & Jeffrey Blume, 2020. "A Robust Effect Size Index," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 232-246, March.
    14. Li-Chu Chien & Tsung-Shan Tsou, 2014. "Robust influence diagnostics for generalized linear models with continuous responses," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(4), pages 324-343, November.
    15. David T. Frazier & Christian P. Robert & Judith Rousseau, 2017. "Model Misspecification in ABC: Consequences and Diagnostics," Papers 1708.01974, arXiv.org, revised Jul 2019.
    16. P. G. Bissiri & C. C. Holmes & S. G. Walker, 2016. "A general framework for updating belief distributions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1103-1130, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:78:y:2015:i:6:p:635-646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.