IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v75y2012i7p855-875.html
   My bibliography  Save this article

A linear approximation to the power function of a test

Author

Listed:
  • A. García-Pérez

Abstract

In this paper we obtain a linear approximation to the power function of a test that is very accurate for small sample sizes. This is especially useful for robust tests where not many power functions are available. The approximation is based on the von Mises expansion of the tail probability functional and on the Tail Area Influence Function (TAIF). The goals of the paper are, first to extend the definition of the TAIF to the case of non identically distributed random variables, defining the Partial Tail Area Influence Functions and the Vectorial Tail Area Influence Function; second, to obtain exact expressions for computing these new influence functions; and, finally, to find accurate approximations to the power function, that can be used in the case of non identically distributed random variables. We include some examples of the application of this linear approximation to tests that involve the Huber statistic and also saddlepoint tests, so proving that the approximations apply not only to simple problems but also to complex ones. Copyright Springer-Verlag 2012

Suggested Citation

  • A. García-Pérez, 2012. "A linear approximation to the power function of a test," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(7), pages 855-875, October.
  • Handle: RePEc:spr:metrik:v:75:y:2012:i:7:p:855-875
    DOI: 10.1007/s00184-011-0356-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-011-0356-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-011-0356-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lô, Serigne N. & Ronchetti, Elvezio, 2009. "Robust and accurate inference for generalized linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2126-2136, October.
    2. Pires, Ana M. & Branco, João A., 2002. "Partial Influence Functions," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 451-468, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephanie Aerts & Gentiane Haesbroeck, 2017. "Robust asymptotic tests for the equality of multivariate coefficients of variation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 163-187, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Graciela Boente & Frank Critchley & Liliana Orellana, 2007. "Influence functions of two families of robust estimators under proportional scatter matrices," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 295-327, February.
    2. Bianco, Ana & Boente, Graciela & Pires, Ana M. & Rodrigues, Isabel M., 2008. "Robust discrimination under a hierarchy on the scatter matrices," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1332-1357, July.
    3. Aeberhard, William H. & Cantoni, Eva & Heritier, Stephane, 2017. "Saddlepoint tests for accurate and robust inference on overdispersed count data," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 162-175.
    4. Boente, Graciela & Molina, Julieta & Sued, Mariela, 2010. "On the asymptotic behavior of general projection-pursuit estimators under the common principal components model," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 228-235, February.
    5. Ronchetti, Elvezio, 2020. "Accurate and robust inference," Econometrics and Statistics, Elsevier, vol. 14(C), pages 74-88.
    6. Prendergast, Luke A. & Smith, Jodie A., 2022. "Influence functions for linear discriminant analysis: Sensitivity analysis and efficient influence diagnostics," Journal of Multivariate Analysis, Elsevier, vol. 190(C).
    7. Boente, Graciela & Pires, Ana M. & Rodrigues, Isabel M., 2006. "General projection-pursuit estimators for the common principal components model: influence functions and Monte Carlo study," Journal of Multivariate Analysis, Elsevier, vol. 97(1), pages 124-147, January.
    8. Graciela Boente & Frank Critchley & Liliana Orellana, 2007. "Influence functions of two families of robust estimators under proportional scatter matrices," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 15(3), pages 295-327, February.
    9. Ayanendranath Basu & Abhijit Mandal & Nirian Martín & Leandro Pardo, 2019. "A Robust Wald-Type Test for Testing the Equality of Two Means from Log-Normal Samples," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 85-107, March.
    10. Zhou, Jianhui, 2009. "Robust dimension reduction based on canonical correlation," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 195-209, January.
    11. Alfonso García-Pérez, 2023. "A New Estimator: Median of the Distribution of the Mean in Robustness," Mathematics, MDPI, vol. 11(12), pages 1-13, June.
    12. Croux, Christophe & Joossens, Kristel, 2005. "Influence of observations on the misclassification probability in quadratic discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 384-403, October.
    13. Zifeng Zhao & Feiyu Jiang & Xiaofeng Shao, 2022. "Segmenting time series via self‐normalisation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1699-1725, November.
    14. Pires, Ana M. & Branco, João A., 2010. "Projection-pursuit approach to robust linear discriminant analysis," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2464-2485, November.
    15. Stephanie Aerts & Gentiane Haesbroeck, 2017. "Robust asymptotic tests for the equality of multivariate coefficients of variation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 163-187, March.
    16. Stella Kitromilidou & Konstantinos Fokianos, 2016. "Mallows’ quasi-likelihood estimation for log-linear Poisson autoregressions," Statistical Inference for Stochastic Processes, Springer, vol. 19(3), pages 337-361, October.
    17. Kolassa, John E. & Robinson, John, 2017. "Nonparametric tests for multi-parameter M-estimators," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 103-116.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:75:y:2012:i:7:p:855-875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.