IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v71y2010i1p59-77.html
   My bibliography  Save this article

A generalized correlated binomial distribution with application in multiple testing problems

Author

Listed:
  • Ramesh Gupta
  • Hui Tao

Abstract

No abstract is available for this item.

Suggested Citation

  • Ramesh Gupta & Hui Tao, 2010. "A generalized correlated binomial distribution with application in multiple testing problems," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(1), pages 59-77, January.
  • Handle: RePEc:spr:metrik:v:71:y:2010:i:1:p:59-77
    DOI: 10.1007/s00184-008-0202-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00184-008-0202-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00184-008-0202-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Chang & Zelterman, Daniel, 2002. "Sums of dependent Bernoulli random variables and disease clustering," Statistics & Probability Letters, Elsevier, vol. 57(4), pages 363-373, May.
    2. Chen-An Tsai & Huey-miin Hsueh & James J. Chen, 2003. "Estimation of False Discovery Rates in Multiple Testing: Application to Gene Microarray Data," Biometrics, The International Biometric Society, vol. 59(4), pages 1071-1081, December.
    3. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shusen Qi & Ralph De Haas & Steven Ongena & Stefan Straetmans & Tamas Vadasz, 2017. "Move a Little Closer? Information Sharing and the Spatial Clustering of Bank Branches," Swiss Finance Institute Research Paper Series 17-74, Swiss Finance Institute, revised Jun 2023.
    2. Kvaløy, Ola & Olsen, Trond E., 2016. "Teams in Relational Contracts," Discussion Papers 2016/23, Norwegian School of Economics, Department of Business and Management Science.
    3. Borges, Patrick & Rodrigues, Josemar & Balakrishnan, Narayanaswamy & Bazán, Jorge, 2014. "A COM–Poisson type generalization of the binomial distribution and its properties and applications," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 158-166.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert R. Delongchamp & John F. Bowyer & James J. Chen & Ralph L. Kodell, 2004. "Multiple-Testing Strategy for Analyzing cDNA Array Data on Gene Expression," Biometrics, The International Biometric Society, vol. 60(3), pages 774-782, September.
    2. Borges, Patrick & Rodrigues, Josemar & Balakrishnan, Narayanaswamy & Bazán, Jorge, 2014. "A COM–Poisson type generalization of the binomial distribution and its properties and applications," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 158-166.
    3. Yongqiang Tang & Subhashis Ghosal & Anindya Roy, 2007. "Nonparametric Bayesian Estimation of Positive False Discovery Rates," Biometrics, The International Biometric Society, vol. 63(4), pages 1126-1134, December.
    4. Kenneth Rice & David Spiegelhalter, 2006. "A Simple Diagnostic Plot Connecting Robust Estimation, Outlier Detection, and False Discovery Rates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(10), pages 1131-1147.
    5. Hunt, Daniel L. & Cheng, Cheng & Pounds, Stanley, 2009. "The beta-binomial distribution for estimating the number of false rejections in microarray gene expression studies," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1688-1700, March.
    6. Hung-Chia Chen & James J. Chen, 2016. "Hybrid Mixture Model for Subpopulation Identification," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 28-42, June.
    7. József Bukszár & Edwin J. C. G. van den Oord, 2006. "Optimization of Two-Stage Genetic Designs Where Data Are Combined Using an Accurate and Efficient Approximation for Pearson's Statistic," Biometrics, The International Biometric Society, vol. 62(4), pages 1132-1137, December.
    8. Youngchao Ge & Sandrine Dudoit & Terence Speed, 2003. "Resampling-based multiple testing for microarray data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-77, June.
    9. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    10. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    11. Dørum Guro & Snipen Lars & Solheim Margrete & Saebo Solve, 2011. "Smoothing Gene Expression Data with Network Information Improves Consistency of Regulated Genes," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-26, August.
    12. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    13. A Bottle & P Aylin, 2011. "Predicting the false alarm rate in multi-institution mortality monitoring," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1711-1718, September.
    14. Van Hanh Nguyen & Catherine Matias, 2014. "On Efficient Estimators of the Proportion of True Null Hypotheses in a Multiple Testing Setup," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1167-1194, December.
    15. Shigeyuki Matsui & Hisashi Noma, 2011. "Estimating Effect Sizes of Differentially Expressed Genes for Power and Sample-Size Assessments in Microarray Experiments," Biometrics, The International Biometric Society, vol. 67(4), pages 1225-1235, December.
    16. Lianming Wang & David B. Dunson, 2010. "Semiparametric Bayes Multiple Testing: Applications to Tumor Data," Biometrics, The International Biometric Society, vol. 66(2), pages 493-501, June.
    17. Ebrahimi, Nader, 2008. "Simultaneous control of false positives and false negatives in multiple hypotheses testing," Journal of Multivariate Analysis, Elsevier, vol. 99(3), pages 437-450, March.
    18. B. Moerkerke & E. Goetghebeur & J. De Riek & I. Roldán‐Ruiz, 2006. "Significance and impotence: towards a balanced view of the null and the alternative hypotheses in marker selection for plant breeding," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(1), pages 61-79, January.
    19. Zaili Fang & Inyoung Kim & Jeesun Jung, 2018. "Semiparametric Kernel-Based Regression for Evaluating Interaction Between Pathway Effect and Covariate," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(1), pages 129-152, March.
    20. Mark Rempel, 2016. "Improving Overnight Loan Identification in Payments Systems," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 48(2-3), pages 549-564, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:71:y:2010:i:1:p:59-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.