IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v62y2006i4p1132-1137.html
   My bibliography  Save this article

Optimization of Two-Stage Genetic Designs Where Data Are Combined Using an Accurate and Efficient Approximation for Pearson's Statistic

Author

Listed:
  • József Bukszár
  • Edwin J. C. G. van den Oord

Abstract

No abstract is available for this item.

Suggested Citation

  • József Bukszár & Edwin J. C. G. van den Oord, 2006. "Optimization of Two-Stage Genetic Designs Where Data Are Combined Using an Accurate and Efficient Approximation for Pearson's Statistic," Biometrics, The International Biometric Society, vol. 62(4), pages 1132-1137, December.
  • Handle: RePEc:bla:biomet:v:62:y:2006:i:4:p:1132-1137
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2006.00583.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jaya M. Satagopan & E. S. Venkatraman & Colin B. Begg, 2004. "Two-Stage Designs for Gene–Disease Association Studies with Sample Size Constraints," Biometrics, The International Biometric Society, vol. 60(3), pages 589-597, September.
    2. Chen-An Tsai & Huey-miin Hsueh & James J. Chen, 2003. "Estimation of False Discovery Rates in Multiple Testing: Application to Gene Microarray Data," Biometrics, The International Biometric Society, vol. 59(4), pages 1071-1081, December.
    3. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hunt, Daniel L. & Cheng, Cheng & Pounds, Stanley, 2009. "The beta-binomial distribution for estimating the number of false rejections in microarray gene expression studies," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1688-1700, March.
    2. Steibel, Juan P. & Rosa, Guilherme J.M. & Tempelman, Robert J., 2009. "Optimizing design of two-stage experiments for transcriptional profiling," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1639-1649, March.
    3. Robert R. Delongchamp & John F. Bowyer & James J. Chen & Ralph L. Kodell, 2004. "Multiple-Testing Strategy for Analyzing cDNA Array Data on Gene Expression," Biometrics, The International Biometric Society, vol. 60(3), pages 774-782, September.
    4. T. Tony Cai & Wenguang Sun, 2017. "Optimal screening and discovery of sparse signals with applications to multistage high throughput studies," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 197-223, January.
    5. Yongqiang Tang & Subhashis Ghosal & Anindya Roy, 2007. "Nonparametric Bayesian Estimation of Positive False Discovery Rates," Biometrics, The International Biometric Society, vol. 63(4), pages 1126-1134, December.
    6. Hung-Chia Chen & James J. Chen, 2016. "Hybrid Mixture Model for Subpopulation Identification," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(1), pages 28-42, June.
    7. Ramesh Gupta & Hui Tao, 2010. "A generalized correlated binomial distribution with application in multiple testing problems," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 71(1), pages 59-77, January.
    8. Kenneth Rice & David Spiegelhalter, 2006. "A Simple Diagnostic Plot Connecting Robust Estimation, Outlier Detection, and False Discovery Rates," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(10), pages 1131-1147.
    9. Youngchao Ge & Sandrine Dudoit & Terence Speed, 2003. "Resampling-based multiple testing for microarray data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-77, June.
    10. Timothy B. Armstrong & Michal Kolesár & Mikkel Plagborg‐Møller, 2022. "Robust Empirical Bayes Confidence Intervals," Econometrica, Econometric Society, vol. 90(6), pages 2567-2602, November.
    11. André Scherag & Johannes Hebebrand & Helmut Schäfer & Hans-Helge Müller, 2009. "Flexible Designs for Genomewide Association Studies," Biometrics, The International Biometric Society, vol. 65(3), pages 815-821, September.
    12. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    13. Bethany L Dearlove & Simon D W Frost, 2015. "Measuring Asymmetry in Time-Stamped Phylogenies," PLOS Computational Biology, Public Library of Science, vol. 11(7), pages 1-16, July.
    14. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    15. Dørum Guro & Snipen Lars & Solheim Margrete & Saebo Solve, 2011. "Smoothing Gene Expression Data with Network Information Improves Consistency of Regulated Genes," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-26, August.
    16. Bourdeau-Brien, Michael & Kryzanowski, Lawrence, 2017. "The impact of natural disasters on the stock returns and volatilities of local firms," The Quarterly Review of Economics and Finance, Elsevier, vol. 63(C), pages 259-270.
    17. Fernando A. Quintana & Peter Müller & Gary L. Rosner & Mary V. Relling, 2008. "A semiparametric Bayesian model for repeatedly repeated binary outcomes," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 419-431, September.
    18. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    19. Guo, Wenge & Bhaskara Rao, M., 2008. "On optimality of the Benjamini-Hochberg procedure for the false discovery rate," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2024-2030, October.
    20. Duncan C. Thomas, 2005. "Discussion on "Statistical Issues Arising in the Women's Health Initiative"," Biometrics, The International Biometric Society, vol. 61(4), pages 930-933, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:62:y:2006:i:4:p:1132-1137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.