IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v34y2021i1d10.1007_s10959-020-01022-z.html
   My bibliography  Save this article

Regenerativity of Viterbi Process for Pairwise Markov Models

Author

Listed:
  • Jüri Lember
  • Joonas Sova

Abstract

For hidden Markov models, one of the most popular estimates of the hidden chain is the Viterbi path—the path maximising the posterior probability. We consider a more general setting, called the pairwise Markov model (PMM), where the joint process consisting of finite-state hidden process and observation process is assumed to be a Markov chain. It has been recently proven that under some conditions the Viterbi path of the PMM can almost surely be extended to infinity, thereby defining the infinite Viterbi decoding of the observation sequence, called the Viterbi process. This was done by constructing a block of observations, called a barrier, which ensures that the Viterbi path goes through a given state whenever this block occurs in the observation sequence. In this paper, we prove that the joint process consisting of Viterbi process and PMM is regenerative. The proof involves a delicate construction of regeneration times which coincide with the occurrences of barriers. As one possible application of our theory, some results on the asymptotics of the Viterbi training algorithm are derived.

Suggested Citation

  • Jüri Lember & Joonas Sova, 2021. "Regenerativity of Viterbi Process for Pairwise Markov Models," Journal of Theoretical Probability, Springer, vol. 34(1), pages 1-33, March.
  • Handle: RePEc:spr:jotpro:v:34:y:2021:i:1:d:10.1007_s10959-020-01022-z
    DOI: 10.1007/s10959-020-01022-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-020-01022-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-020-01022-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vladimir V. Kalashnikov, 1994. "Topics on regenerative processes," International Journal of Stochastic Analysis, Hindawi, vol. 7, pages 1-1, January.
    2. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    3. Lember, Jüri, 2011. "On approximation of smoothing probabilities for hidden Markov models," Statistics & Probability Letters, Elsevier, vol. 81(2), pages 310-316, February.
    4. Hamilton, James D., 1990. "Analysis of time series subject to changes in regime," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 39-70.
    5. Kristi Kuljus & Jüri Lember, 2016. "On the Accuracy of the MAP Inference in HMMs," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 597-627, September.
    6. Lember, Jüri & Sova, Joonas, 2020. "Existence of infinite Viterbi path for pairwise Markov models," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1388-1425.
    7. Lember, Jüri, 2011. "A correction on approximation of smoothing probabilities for hidden Markov models," Statistics & Probability Letters, Elsevier, vol. 81(9), pages 1463-1464, September.
    8. Derrode, Stéphane & Pieczynski, Wojciech, 2013. "Unsupervised data classification using pairwise Markov chains with automatic copulas selection," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 81-98.
    9. Celeux, Gilles & Govaert, Gerard, 1992. "A classification EM algorithm for clustering and two stochastic versions," Computational Statistics & Data Analysis, Elsevier, vol. 14(3), pages 315-332, October.
    10. Goodwin, Thomas H, 1993. "Business-Cycle Analysis with a Markov-Switching Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 331-339, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lember, Jüri & Sova, Joonas, 2020. "Existence of infinite Viterbi path for pairwise Markov models," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1388-1425.
    2. Nan Li & Simon S. Kwok, 2021. "Jointly determining the state dimension and lag order for Markov‐switching vector autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 471-491, July.
    3. Rómulo Chumacero & Jorge Quiroz, 1996. "La Tasa Natural de Crecimiento de la Economía Chilena: 1985-1996," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 33(100), pages 453-472.
    4. Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar & Stephen M. Miller, 2012. "Was the Recent Downturn in US GDP Predictable?," Working Papers 1210, University of Nevada, Las Vegas , Department of Economics.
    5. Alison Tarditi, 1996. "Modelling the Australian Exchange Rate, Long Bond Yield and Inflationary Expectations," RBA Research Discussion Papers rdp9608, Reserve Bank of Australia.
    6. Matteo Manera & Alessandro Cologni, 2006. "The Asymmetric Effects of Oil Shocks on Output Growth: A Markov-Switching Analysis for the G-7 Countries," Working Papers 2006.29, Fondazione Eni Enrico Mattei.
    7. Marco Rubilar-González & Gabriel Pino, 2018. "Are Euro-Area expectations about recession phases effective to anticipate consequences of economic crises?," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 9(2), pages 141-161, June.
    8. Franses, Philip Hans & Paap, Richard, 1999. "Does Seasonality Influence the Dating of Business Cycle Turning Points?," Journal of Macroeconomics, Elsevier, vol. 21(1), pages 79-92, January.
    9. Getmansky, Mila & Lo, Andrew W. & Makarov, Igor, 2004. "An econometric model of serial correlation and illiquidity in hedge fund returns," Journal of Financial Economics, Elsevier, vol. 74(3), pages 529-609, December.
    10. Chung-Ming Kuan, 2013. "Markov switching model (in Russian)," Quantile, Quantile, issue 11, pages 13-40, December.
    11. Mike Artis & Hans-Martin Krolzig & Juan Toro, 2004. "The European business cycle," Oxford Economic Papers, Oxford University Press, vol. 56(1), pages 1-44, January.
    12. Uctum, Remzi, 2007. "Économétrie des modèles à changement de régimes : un essai de synthèse," L'Actualité Economique, Société Canadienne de Science Economique, vol. 83(4), pages 447-482, décembre.
    13. Nabil Maghrebi & Mark J. Holmes & Kosuke Oya, 2014. "Financial instability and the short-term dynamics of volatility expectations," Applied Financial Economics, Taylor & Francis Journals, vol. 24(6), pages 377-395, March.
    14. Imrohoroglu, Selahattin, 1995. "A Markov switching model for the Hungarian price stabilization plan of 1924," Journal of Macroeconomics, Elsevier, vol. 17(2), pages 347-355.
    15. Doğan, İbrahim & Bilgili, Faik, 2014. "The non-linear impact of high and growing government external debt on economic growth: A Markov Regime-switching approach," Economic Modelling, Elsevier, vol. 39(C), pages 213-220.
    16. Rodriguez Gabriel, 2007. "Application of Three Alternative Approaches to Identify Business Cycles in Peru," Working Papers 2007-007, Banco Central de Reserva del Perú.
    17. Pami Dua & Divya Tuteja, 2021. "Regime Shifts in the Behaviour of International Currency and Equity Markets: A Markov-Switching Analysis," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 309-336, December.
    18. Liu, Wen-Hsien & Chyi, Yih-Luan, 2006. "A Markov regime-switching model for the semiconductor industry cycles," Economic Modelling, Elsevier, vol. 23(4), pages 569-578, July.
    19. Bilgili, Faik & Tülüce, Nadide Sevil Halıcı & Doğan, İbrahim, 2012. "The determinants of FDI in Turkey: A Markov Regime-Switching approach," Economic Modelling, Elsevier, vol. 29(4), pages 1161-1169.
    20. Manera, Matteo & Cologni, Alessandro, 2006. "The Asymmetric Effects of Oil Shocks on Output Growth: A Markov-Switching Analysis," International Energy Markets Working Papers 12121, Fondazione Eni Enrico Mattei (FEEM).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:34:y:2021:i:1:d:10.1007_s10959-020-01022-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.