IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v31y2002i3p327-350.html
   My bibliography  Save this article

On the moments of the surplus process perturbed by diffusion

Author

Listed:
  • Tsai, Cary Chi-Liang
  • Willmot, Gordon E.

Abstract

No abstract is available for this item.

Suggested Citation

  • Tsai, Cary Chi-Liang & Willmot, Gordon E., 2002. "On the moments of the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 327-350, December.
  • Handle: RePEc:eee:insuma:v:31:y:2002:i:3:p:327-350
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(02)00159-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, X. Sheldon & Willmot, Gordon E., 1999. "Analysis of a defective renewal equation arising in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 63-84, September.
    2. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    3. Dufresne, Francois & Gerber, Hans U., 1991. "Risk theory for the compound Poisson process that is perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 10(1), pages 51-59, March.
    4. Lin, X. Sheldon & Willmot, Gordon E., 2000. "The moments of the time of ruin, the surplus before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 19-44, August.
    5. Tsai, Cary Chi-Liang & Willmot, Gordon E., 2002. "A generalized defective renewal equation for the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 51-66, February.
    6. Gerber, Hans U. & Landry, Bruno, 1998. "On the discounted penalty at ruin in a jump-diffusion and the perpetual put option," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 263-276, July.
    7. Picard, Philippe & Lefevre, Claude, 1998. "The moments of ruin time in the classical risk model with discrete claim size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 23(2), pages 157-172, November.
    8. Picard, Ph. & Lefevre, C., 1999. "Corrigendun to "The moments of ruin time in the classical risk model with discrete claim size distribution" [Insurance: Mathematics and Economics 23 (1998) 157-172]," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 105-107, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cossette, Hélène & Landriault, David & Marceau, Etienne & Moutanabbir, Khouzeima, 2012. "Analysis of the discounted sum of ascending ladder heights," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 393-401.
    2. Biffis, Enrico & Kyprianou, Andreas E., 2010. "A note on scale functions and the time value of ruin for Lévy insurance risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 85-91, February.
    3. Vaios Dermitzakis & Konstadinos Politis, 2011. "Asymptotics for the Moments of the Time to Ruin for the Compound Poisson Model Perturbed by Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 749-761, December.
    4. Tsai, Cary Chi-Liang, 2003. "On the expectations of the present values of the time of ruin perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 413-429, July.
    5. Yu, Wenguang, 2013. "Some results on absolute ruin in the perturbed insurance risk model with investment and debit interests," Economic Modelling, Elsevier, vol. 31(C), pages 625-634.
    6. Wang, Guojing & Wu, Rong, 2008. "The expected discounted penalty function for the perturbed compound Poisson risk process with constant interest," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 59-64, February.
    7. Philipp Lukas Strietzel & Anita Behme, 2022. "Moments of the Ruin Time in a Lévy Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3075-3099, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chiu, S. N. & Yin, C. C., 2003. "The time of ruin, the surplus prior to ruin and the deficit at ruin for the classical risk process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 59-66, August.
    2. Chi, Yichun & Jaimungal, Sebastian & Lin, X. Sheldon, 2010. "An insurance risk model with stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 52-66, February.
    3. Franck Adékambi & Essodina Takouda, 2020. "Gerber–Shiu Function in a Class of Delayed and Perturbed Risk Model with Dependence," Risks, MDPI, vol. 8(1), pages 1-25, March.
    4. Chi, Yichun, 2010. "Analysis of the expected discounted penalty function for a general jump-diffusion risk model and applications in finance," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 385-396, April.
    5. Chi, Yichun & Lin, X. Sheldon, 2011. "On the threshold dividend strategy for a generalized jump-diffusion risk model," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 326-337, May.
    6. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    7. Sarkar, Joykrishna & Sen, Arusharka, 2005. "Weak convergence approach to compound Poisson risk processes perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 421-432, June.
    8. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    9. Schmidli, Hanspeter, 2010. "On the Gerber-Shiu function and change of measure," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 3-11, February.
    10. Yang, Hu & Zhang, Zhimin, 2009. "The perturbed compound Poisson risk model with multi-layer dividend strategy," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 70-78, January.
    11. Lin, X. Sheldon & Wang, Tao, 2009. "Pricing perpetual American catastrophe put options: A penalty function approach," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 287-295, April.
    12. Li, Shuanming & Garrido, José, 2002. "On the time value of ruin in the discrete time risk model," DEE - Working Papers. Business Economics. WB wb021812, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    13. Tsai, Cary Chi-Liang & Willmot, Gordon E., 2002. "A generalized defective renewal equation for the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 51-66, February.
    14. Philipp Lukas Strietzel & Anita Behme, 2022. "Moments of the Ruin Time in a Lévy Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3075-3099, December.
    15. Biffis, Enrico & Morales, Manuel, 2010. "On a generalization of the Gerber-Shiu function to path-dependent penalties," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 92-97, February.
    16. Tsai, Cary Chi-Liang, 2003. "On the expectations of the present values of the time of ruin perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 413-429, July.
    17. Morales, Manuel, 2007. "On the expected discounted penalty function for a perturbed risk process driven by a subordinator," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 293-301, March.
    18. Franck Adékambi & Essodina Takouda, 2022. "On the Discounted Penalty Function in a Perturbed Erlang Renewal Risk Model With Dependence," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 481-513, June.
    19. Mitric, Ilie-Radu & Sendova, Kristina P. & Tsai, Cary Chi-Liang, 2010. "On a multi-threshold compound Poisson process perturbed by diffusion," Statistics & Probability Letters, Elsevier, vol. 80(5-6), pages 366-375, March.
    20. Tsai, Cary Chi-Liang, 2006. "On the stop-loss transform and order for the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 39(1), pages 151-170, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:31:y:2002:i:3:p:327-350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.