IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v61y2015icp170-180.html
   My bibliography  Save this article

Fourier-cosine method for Gerber–Shiu functions

Author

Listed:
  • Chau, K.W.
  • Yam, S.C.P.
  • Yang, H.

Abstract

In this article, we provide a systematic study on effectively approximating the Gerber–Shiu functions, which is a hardly touched topic in the current literature, by incorporating the recently popular Fourier-cosine method. Fourier-cosine method has been a prevailing numerical method in option pricing theory since the work of Fang and Oosterlee (2009). Our approximant of Gerber–Shiu functions under Lévy subordinator model has O(n) computational complexity in comparison with that of O(nlogn) via the fast Fourier transform algorithm. Also, for Gerber–Shiu functions within our proposed refined Sobolev space, we introduce an explicit error bound, which seems to be absent from the literature. In contrast with our previous work (Chau et al., 2015), this error bound is more conservative without making heavy assumptions on the Fourier transform of the Gerber–Shiu function. The effectiveness of our result will be further demonstrated in the numerical studies.

Suggested Citation

  • Chau, K.W. & Yam, S.C.P. & Yang, H., 2015. "Fourier-cosine method for Gerber–Shiu functions," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 170-180.
  • Handle: RePEc:eee:insuma:v:61:y:2015:i:c:p:170-180
    DOI: 10.1016/j.insmatheco.2015.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668715000098
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2015.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fang, Fang & Oosterlee, Kees, 2008. "A Novel Pricing Method For European Options Based On Fourier-Cosine Series Expansions," MPRA Paper 9319, University Library of Munich, Germany.
    2. Zhang, Zhimin & Yang, Hailiang, 2013. "Nonparametric estimate of the ruin probability in a pure-jump Lévy risk model," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 24-35.
    3. Lin, X. Sheldon & Willmot, Gordon E., 1999. "Analysis of a defective renewal equation arising in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 63-84, September.
    4. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    5. Lin, X. Sheldon & Willmot, Gordon E., 2000. "The moments of the time of ruin, the surplus before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 19-44, August.
    6. Landriault, David & Willmot, Gordon, 2008. "On the Gerber-Shiu discounted penalty function in the Sparre Andersen model with an arbitrary interclaim time distribution," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 600-608, April.
    7. Albrecher, Hansjörg & Constantinescu, Corina & Pirsic, Gottlieb & Regensburger, Georg & Rosenkranz, Markus, 2010. "An algebraic operator approach to the analysis of Gerber-Shiu functions," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 42-51, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zan Yu & Lianzeng Zhang, 2024. "Computing the Gerber-Shiu function with interest and a constant dividend barrier by physics-informed neural networks," Papers 2401.04378, arXiv.org.
    2. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    3. Chongkai Xie & Honglong You, 2024. "A Threshold Estimator for Ruin Probability Using the Fourier-Cosine Method in the Wiener–Poisson Risk Model," Mathematics, MDPI, vol. 12(18), pages 1-14, September.
    4. Simon Pojer & Stefan Thonhauser, 2023. "The Markovian Shot-noise Risk Model: A Numerical Method for Gerber-Shiu Functions," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-26, March.
    5. Bravo, Jorge M. & Nunes, João Pedro Vidal, 2021. "Pricing longevity derivatives via Fourier transforms," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 81-97.
    6. Kang Hu & Ya Huang & Yingchun Deng, 2023. "Estimating the Gerber–Shiu Function in the Two-Sided Jumps Risk Model by Laguerre Series Expansion," Mathematics, MDPI, vol. 11(9), pages 1-30, April.
    7. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    8. Wenguang Yu & Yaodi Yong & Guofeng Guan & Yujuan Huang & Wen Su & Chaoran Cui, 2019. "Valuing Guaranteed Minimum Death Benefits by Cosine Series Expansion," Mathematics, MDPI, vol. 7(9), pages 1-15, September.
    9. Xie, Jiayi & Zhang, Zhimin, 2020. "Statistical estimation for some dividend problems under the compound Poisson risk model," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 101-115.
    10. Yunyun Wang & Wenguang Yu & Yujuan Huang & Xinliang Yu & Hongli Fan, 2019. "Estimating the Expected Discounted Penalty Function in a Compound Poisson Insurance Risk Model with Mixed Premium Income," Mathematics, MDPI, vol. 7(3), pages 1-25, March.
    11. Xie, Jiayi & Zhang, Zhimin, 2021. "Finite-time dividend problems in a Lévy risk model under periodic observation," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    12. Lee, Wing Yan & Li, Xiaolong & Liu, Fangda & Shi, Yifan & Yam, Sheung Chi Phillip, 2021. "A Fourier-cosine method for finite-time ruin probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 256-267.
    13. Yang, Yang & Su, Wen & Zhang, Zhimin, 2019. "Estimating the discounted density of the deficit at ruin by Fourier cosine series expansion," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 147-155.
    14. Wang, Yayun & Zhang, Zhimin & Yu, Wenguang, 2021. "Pricing equity-linked death benefits by complex Fourier series expansion in a regime-switching jump diffusion model," Applied Mathematics and Computation, Elsevier, vol. 399(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    2. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    3. Tang, Qihe & Wei, Li, 2010. "Asymptotic aspects of the Gerber-Shiu function in the renewal risk model using Wiener-Hopf factorization and convolution equivalence," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 19-31, February.
    4. Anna Castañer & M. Claramunt & Maite Mármol, 2012. "Ruin probability and time of ruin with a proportional reinsurance threshold strategy," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(3), pages 614-638, October.
    5. Zhang, Zhimin & Yang, Hu, 2010. "A generalized penalty function in the Sparre-Andersen risk model with two-sided jumps," Statistics & Probability Letters, Elsevier, vol. 80(7-8), pages 597-607, April.
    6. Franck Adékambi & Essodina Takouda, 2020. "Gerber–Shiu Function in a Class of Delayed and Perturbed Risk Model with Dependence," Risks, MDPI, vol. 8(1), pages 1-25, March.
    7. Albrecher, Hansjörg & Constantinescu, Corina & Pirsic, Gottlieb & Regensburger, Georg & Rosenkranz, Markus, 2010. "An algebraic operator approach to the analysis of Gerber-Shiu functions," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 42-51, February.
    8. Xie, Jiayi & Zhang, Zhimin, 2020. "Statistical estimation for some dividend problems under the compound Poisson risk model," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 101-115.
    9. Lin, X. Sheldon & Wang, Tao, 2009. "Pricing perpetual American catastrophe put options: A penalty function approach," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 287-295, April.
    10. Li, Shuanming & Garrido, José, 2002. "On the time value of ruin in the discrete time risk model," DEE - Working Papers. Business Economics. WB wb021812, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    11. Chi, Yichun, 2010. "Analysis of the expected discounted penalty function for a general jump-diffusion risk model and applications in finance," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 385-396, April.
    12. Chiu, S. N. & Yin, C. C., 2003. "The time of ruin, the surplus prior to ruin and the deficit at ruin for the classical risk process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 59-66, August.
    13. Philipp Lukas Strietzel & Anita Behme, 2022. "Moments of the Ruin Time in a Lévy Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3075-3099, December.
    14. Yang, Yang & Su, Wen & Zhang, Zhimin, 2019. "Estimating the discounted density of the deficit at ruin by Fourier cosine series expansion," Statistics & Probability Letters, Elsevier, vol. 146(C), pages 147-155.
    15. Cossette, Hélène & Landriault, David & Marceau, Etienne & Moutanabbir, Khouzeima, 2012. "Analysis of the discounted sum of ascending ladder heights," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 393-401.
    16. Willmot, Gordon E., 2007. "On the discounted penalty function in the renewal risk model with general interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 17-31, July.
    17. Ahn, Soohan & Badescu, Andrei L., 2007. "On the analysis of the Gerber-Shiu discounted penalty function for risk processes with Markovian arrivals," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 234-249, September.
    18. Willmot, Gordon E. & Dickson, David C. M., 2003. "The Gerber-Shiu discounted penalty function in the stationary renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 403-411, July.
    19. Hansjorg Albrecher & Corina Constantinescu & Zbigniew Palmowski & Georg Regensburger & Markus Rosenkranz, 2011. "Exact and asymptotic results for insurance risk models with surplus-dependent premiums," Papers 1110.5276, arXiv.org.
    20. Sheldon Lin, X. & E. Willmot, Gordon & Drekic, Steve, 2003. "The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 551-566, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:61:y:2015:i:c:p:170-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.