IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v46y2010i1p52-66.html
   My bibliography  Save this article

An insurance risk model with stochastic volatility

Author

Listed:
  • Chi, Yichun
  • Jaimungal, Sebastian
  • Lin, X. Sheldon

Abstract

In this paper, we extend the Cramér-Lundberg insurance risk model perturbed by diffusion to incorporate stochastic volatility and study the resulting Gerber-Shiu expected discounted penalty (EDP) function. Under the assumption that volatility is driven by an underlying Ornstein-Uhlenbeck (OU) process, we derive the integro-differential equation which the EDP function satisfies. Not surprisingly, no closed-form solution exists; however, assuming the driving OU process is fast mean-reverting, we apply the singular perturbation theory to obtain an asymptotic expansion of the solution. Two integro-differential equations for the first two terms in this expansion are obtained and explicitly solved. When the claim size distribution is of phase-type, the asymptotic results simplify even further and we succeed in estimating the error of the approximation. Hyper-exponential and mixed-Erlang distributed claims are considered in some detail.

Suggested Citation

  • Chi, Yichun & Jaimungal, Sebastian & Lin, X. Sheldon, 2010. "An insurance risk model with stochastic volatility," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 52-66, February.
  • Handle: RePEc:eee:insuma:v:46:y:2010:i:1:p:52-66
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-6687(09)00036-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leland, Hayne E, 1994. "Corporate Debt Value, Bond Covenants, and Optimal Capital Structure," Journal of Finance, American Finance Association, vol. 49(4), pages 1213-1252, September.
    2. Albrecher, Hansjörg & Kainhofer, Reinhold & Tichy, Robert F., 2003. "Simulation methods in ruin models with non-linear dividend barriers," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 62(3), pages 277-287.
    3. Ren, Jiandong, 2005. "The expected value of the time of ruin and the moments of the discounted deficit at ruin in the perturbed classical risk process," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 505-521, December.
    4. Gordon Willmot & Jae-Kyung Woo, 2007. "On the Class of Erlang Mixtures with Risk Theoretic Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 11(2), pages 99-115.
    5. Dufresne, Francois & Gerber, Hans U., 1991. "Risk theory for the compound Poisson process that is perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 10(1), pages 51-59, March.
    6. Lin, X. Sheldon & Willmot, Gordon E., 2000. "The moments of the time of ruin, the surplus before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 19-44, August.
    7. Tsai, Cary Chi-Liang & Willmot, Gordon E., 2002. "A generalized defective renewal equation for the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 51-66, February.
    8. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    9. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    10. Dickson,David C. M., 2005. "Insurance Risk and Ruin," Cambridge Books, Cambridge University Press, number 9780521846400.
    11. Lin, X. Sheldon & Willmot, Gordon E., 1999. "Analysis of a defective renewal equation arising in ruin theory," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 63-84, September.
    12. Yu-Ting Chen & Cheng Few Lee & Yuan-Chung Sheu, 2020. "An ODE Approach for the Expected Discounted Penalty at Ruin in a Jump-Diffusion Model," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 41, pages 1561-1598, World Scientific Publishing Co. Pte. Ltd..
    13. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    14. Samuel Hikspoors & Sebastian Jaimungal, 2008. "Asymptotic Pricing of Commodity Derivatives using Stochastic Volatility Spot Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(5-6), pages 449-477.
    15. Pitts, Susan M. & Politis, Konstadinos, 2008. "Approximations for the moments of ruin time in the compound Poisson model," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 668-679, April.
    16. Peter Cotton & Jean‐Pierre Fouque & George Papanicolaou & Ronnie Sircar, 2004. "Stochastic Volatility Corrections for Interest Rate Derivatives," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 173-200, April.
    17. Gerber, Hans U. & Landry, Bruno, 1998. "On the discounted penalty at ruin in a jump-diffusion and the perpetual put option," Insurance: Mathematics and Economics, Elsevier, vol. 22(3), pages 263-276, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    2. Teng, Ye & Zhang, Zhimin, 2023. "On a time-changed Lévy risk model with capital injections and periodic observation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 290-314.
    3. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chi, Yichun, 2010. "Analysis of the expected discounted penalty function for a general jump-diffusion risk model and applications in finance," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 385-396, April.
    2. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    3. Chi, Yichun & Lin, X. Sheldon, 2011. "On the threshold dividend strategy for a generalized jump-diffusion risk model," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 326-337, May.
    4. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    5. Chiu, S. N. & Yin, C. C., 2003. "The time of ruin, the surplus prior to ruin and the deficit at ruin for the classical risk process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 59-66, August.
    6. Tsai, Cary Chi-Liang & Willmot, Gordon E., 2002. "On the moments of the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 327-350, December.
    7. Franck Adékambi & Essodina Takouda, 2020. "Gerber–Shiu Function in a Class of Delayed and Perturbed Risk Model with Dependence," Risks, MDPI, vol. 8(1), pages 1-25, March.
    8. Sarkar, Joykrishna & Sen, Arusharka, 2005. "Weak convergence approach to compound Poisson risk processes perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 421-432, June.
    9. Li, Shuanming & Ren, Jiandong, 2013. "The maximum severity of ruin in a perturbed risk process with Markovian arrivals," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 993-998.
    10. Diko, Peter & Usábel, Miguel, 2011. "A numerical method for the expected penalty-reward function in a Markov-modulated jump-diffusion process," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 126-131, July.
    11. Schmidli, Hanspeter, 2010. "On the Gerber-Shiu function and change of measure," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 3-11, February.
    12. Yang, Hu & Zhang, Zhimin, 2009. "The perturbed compound Poisson risk model with multi-layer dividend strategy," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 70-78, January.
    13. Lin, X. Sheldon & Wang, Tao, 2009. "Pricing perpetual American catastrophe put options: A penalty function approach," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 287-295, April.
    14. Tsai, Cary Chi-Liang & Willmot, Gordon E., 2002. "A generalized defective renewal equation for the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 51-66, February.
    15. Philipp Lukas Strietzel & Anita Behme, 2022. "Moments of the Ruin Time in a Lévy Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3075-3099, December.
    16. Biffis, Enrico & Morales, Manuel, 2010. "On a generalization of the Gerber-Shiu function to path-dependent penalties," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 92-97, February.
    17. Tsai, Cary Chi-Liang, 2003. "On the expectations of the present values of the time of ruin perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 413-429, July.
    18. Morales, Manuel, 2007. "On the expected discounted penalty function for a perturbed risk process driven by a subordinator," Insurance: Mathematics and Economics, Elsevier, vol. 40(2), pages 293-301, March.
    19. Cossette, Hélène & Landriault, David & Marceau, Etienne & Moutanabbir, Khouzeima, 2012. "Analysis of the discounted sum of ascending ladder heights," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 393-401.
    20. Franck Adékambi & Essodina Takouda, 2022. "On the Discounted Penalty Function in a Perturbed Erlang Renewal Risk Model With Dependence," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 481-513, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:46:y:2010:i:1:p:52-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.