IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v50y2012i2p266-279.html
   My bibliography  Save this article

Bayesian modelling of the time delay between diagnosis and settlement for Critical Illness Insurance using a Burr generalised-linear-type model

Author

Listed:
  • Ozkok, Erengul
  • Streftaris, George
  • Waters, Howard R.
  • Wilkie, A. David

Abstract

We discuss Bayesian modelling of the delay between dates of diagnosis and settlement of claims in Critical Illness Insurance using a Burr distribution. The data are supplied by the UK Continuous Mortality Investigation and relate to claims settled in the years 1999–2005. There are non-recorded dates of diagnosis and settlement and these are included in the analysis as missing values using their posterior predictive distribution and MCMC methodology. The possible factors affecting the delay (age, sex, smoker status, policy type, benefit amount, etc.) are investigated under a Bayesian approach. A 3-parameter Burr generalised-linear-type model is fitted, where the covariates are linked to the mean of the distribution. Variable selection using Bayesian methodology to obtain the best model with different prior distribution setups for the parameters is also applied. In particular, Gibbs variable selection methods are considered, and results are confirmed using exact marginal likelihood findings and related Laplace approximations. For comparison purposes, a lognormal model is also considered.

Suggested Citation

  • Ozkok, Erengul & Streftaris, George & Waters, Howard R. & Wilkie, A. David, 2012. "Bayesian modelling of the time delay between diagnosis and settlement for Critical Illness Insurance using a Burr generalised-linear-type model," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 266-279.
  • Handle: RePEc:eee:insuma:v:50:y:2012:i:2:p:266-279
    DOI: 10.1016/j.insmatheco.2011.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668711001326
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2011.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Beirlant, Jan & Goegebeur, Yuri, 2003. "Regression with response distributions of Pareto-type," Computational Statistics & Data Analysis, Elsevier, vol. 42(4), pages 595-619, April.
    2. Beirlant, Jan & Goegebeur, Yuri & Verlaak, Robert & Vynckier, Petra, 1998. "Burr regression and portfolio segmentation," Insurance: Mathematics and Economics, Elsevier, vol. 23(3), pages 231-250, December.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    4. Frees, Edward W. & Valdez, Emiliano A., 2008. "Hierarchical Insurance Claims Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1457-1469.
    5. Katrien Antonio & Jan Beirlant, 2008. "Issues in Claims Reserving and Credibility: A Semiparametric Approach With Mixed Models," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(3), pages 643-676, September.
    6. Vincent Goulet & Christophe Dutang & Mathieu Pigeon, 2008. "actuar : An R Package for Actuarial Science," Post-Print hal-01616144, HAL.
    7. David Scollnik, 2001. "Actuarial Modeling with MCMC and BUGs," North American Actuarial Journal, Taylor & Francis Journals, vol. 5(2), pages 96-124.
    8. Ntzoufras, Ioannis, 2002. "Gibbs Variable Selection using BUGS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 7(i07).
    9. Dutang, Christophe & Goulet, Vincent & Pigeon, Mathieu, 2008. "actuar: An R Package for Actuarial Science," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 25(i07).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandre Brouste & Christophe Dutang & Tom Rohmer, 2020. "Closed-form maximum likelihood estimator for generalized linear models in the case of categorical explanatory variables: application to insurance loss modeling," Computational Statistics, Springer, vol. 35(2), pages 689-724, June.
    2. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, October.
    3. Erengul Dodd & George Streftaris, 2017. "Prediction of settlement delay in critical illness insurance claims by using the generalized beta of the second kind distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 273-294, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:jss:jstsof:35:i10 is not listed on IDEAS
    2. Avanzi, Benjamin & Taylor, Greg & Wang, Melantha & Wong, Bernard, 2021. "SynthETIC: An individual insurance claim simulator with feature control," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 296-308.
    3. Anna Castañer & M.Mercè Claramunt & Maite Mármol, 2014. "Some optimization and decision problems in proportional reinsurance," UB School of Economics Working Papers 2014/310, University of Barcelona School of Economics.
    4. K. G. Reddy & M. G. M. Khan, 2020. "stratifyR: An R Package for optimal stratification and sample allocation for univariate populations," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(3), pages 383-405, September.
    5. Erengul Dodd & George Streftaris, 2017. "Prediction of settlement delay in critical illness insurance claims by using the generalized beta of the second kind distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 273-294, February.
    6. Denuit, Michel, 2019. "Size-biased transform and conditional mean risk sharing, with application to P2P insurance and tontines," LIDAM Discussion Papers ISBA 2019010, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. Yanwei Zhang & Vanja Dukic, 2013. "Predicting Multivariate Insurance Loss Payments Under the Bayesian Copula Framework," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 891-919, December.
    8. Michael Grabchak, 2022. "Discrete Tempered Stable Distributions," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1877-1890, September.
    9. Alexandre Brouste & Christophe Dutang & Tom Rohmer, 2020. "Closed-form maximum likelihood estimator for generalized linear models in the case of categorical explanatory variables: application to insurance loss modeling," Computational Statistics, Springer, vol. 35(2), pages 689-724, June.
    10. Jian Wang & Cielito C. Reyes-Gibby & Sanjay Shete, 2021. "An Approach to Analyze Longitudinal Zero-Inflated Microbiome Count Data Using Two-Stage Mixed Effects Models," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(2), pages 267-290, July.
    11. Tenan, Simone & O’Hara, Robert B. & Hendriks, Iris & Tavecchia, Giacomo, 2014. "Bayesian model selection: The steepest mountain to climb," Ecological Modelling, Elsevier, vol. 283(C), pages 62-69.
    12. Denuit, Michel, 2019. "Investing in your own and peers' risks: The simple analytics of p2p insurance," LIDAM Discussion Papers ISBA 2019028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    13. Bhati, Deepesh & Ravi, Sreenivasan, 2018. "On generalized log-Moyal distribution: A new heavy tailed size distribution," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 247-259.
    14. Katrien Antonio & Jan Beirlant, 2008. "Issues in Claims Reserving and Credibility: A Semiparametric Approach With Mixed Models," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 75(3), pages 643-676, September.
    15. Ekaterina Bulinskaya & Boris Shigida, 2021. "Discrete-Time Model of Company Capital Dynamics with Investment of a Certain Part of Surplus in a Non-Risky Asset for a Fixed Period," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 103-121, March.
    16. Adele H. Marshall & Mariangela Zenga, 2012. "Experimenting with the Coxian Phase-Type Distribution to Uncover Suitable Fits," Methodology and Computing in Applied Probability, Springer, vol. 14(1), pages 71-86, March.
    17. Abu Bakar, S.A. & Hamzah, N.A. & Maghsoudi, M. & Nadarajah, S., 2015. "Modeling loss data using composite models," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 146-154.
    18. Hassan Mazengera, 2017. "Revenue-based lending for SMEs," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-20, June.
    19. Emanuele Taufer & Flavio Santi & Pier Luigi Novi Inverardi & Giuseppe Espa & Maria Michela Dickson, 2020. "Extreme Value Index Estimation by Means of an Inequality Curve," Mathematics, MDPI, vol. 8(10), pages 1-17, October.
    20. Kobus, Paweł, 2013. "Modelling joint distribution of crop plant yields and prices with use of a copula function," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 13(28), pages 1-10, December.
    21. Oh, Rosy & Lee, Youngju & Zhu, Dan & Ahn, Jae Youn, 2021. "Predictive risk analysis using a collective risk model: Choosing between past frequency and aggregate severity information," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 127-139.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:50:y:2012:i:2:p:266-279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.