IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v23y2021i3d10.1007_s11009-020-09796-9.html
   My bibliography  Save this article

Delayed Capital Injections for a Risk Process with Markovian Arrivals

Author

Listed:
  • A. S. Dibu

    (National Institute of Technology Calicut)

  • M. J. Jacob

    (National Institute of Technology Calicut)

  • Apostolos D. Papaioannou

    (University of Liverpool)

  • Lewis Ramsden

    (The York Management School University of York)

Abstract

In this paper we propose a generalisation to the Markov Arrival Process (MAP) risk model, by allowing for a delayed receipt of required capital injections whenever the surplus of an insurance firm is negative. Delayed capital injections often appear in practice due to the time taken for administrative and processing purposes of the funds from a third party or the shareholders of a firm. We introduce a MAP risk model that allows for capital injections to be received instantaneously, or with a random delay, depending on the amount of deficit experienced by the firm. For this model, we derive a system of Fredholm integral equations of the second kind for the Gerber-Shiu function and obtain an explicit expression (in matrix form) in terms of the Gerber-Shiu function of the MAP risk model without capital injections. In addition, we show that the expected discounted accumulated capital injections and the expected discounted overall time in red, up to the time of ruin, satisfy a similar integral equation, which can also be solved explicitly. Finally, to illustrate the applicability of our results, numerical examples are given.

Suggested Citation

  • A. S. Dibu & M. J. Jacob & Apostolos D. Papaioannou & Lewis Ramsden, 2021. "Delayed Capital Injections for a Risk Process with Markovian Arrivals," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 1057-1076, September.
  • Handle: RePEc:spr:metcap:v:23:y:2021:i:3:d:10.1007_s11009-020-09796-9
    DOI: 10.1007/s11009-020-09796-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-020-09796-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-020-09796-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Zhimin & Cheung, Eric C.K. & Yang, Hailiang, 2018. "On The Compound Poisson Risk Model With Periodic Capital Injections," ASTIN Bulletin, Cambridge University Press, vol. 48(1), pages 435-477, January.
    2. V. Ramaswami, 2006. "Passage Times in Fluid Models with Application to Risk Processes," Methodology and Computing in Applied Probability, Springer, vol. 8(4), pages 497-515, December.
    3. Nie, Ciyu & Dickson, David C. M. & Li, Shuanming, 2011. "Minimizing the ruin probability through capital injections," Annals of Actuarial Science, Cambridge University Press, vol. 5(2), pages 195-209, September.
    4. Ramsden, Lewis & Papaioannou, Apostolos D., 2019. "On the time to ruin for a dependent delayed capital injection risk model," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 119-135.
    5. Kulenko, Natalie & Schmidli, Hanspeter, 2008. "Optimal dividend strategies in a Cramér-Lundberg model with capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 270-278, October.
    6. Hans Gerber & Elias Shiu, 1998. "On the Time Value of Ruin," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 48-72.
    7. Ahn, Soohan & Badescu, Andrei L., 2007. "On the analysis of the Gerber-Shiu discounted penalty function for risk processes with Markovian arrivals," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 234-249, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yue & Kawai, Reiichiro & Shimizu, Yasutaka & Yamazaki, Kazutoshi, 2023. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Insurance: Mathematics and Economics, Elsevier, vol. 109(C), pages 1-28.
    2. Abouzar Bazyari, 2023. "On the Ruin Probabilities in a Discrete Time Insurance Risk Process with Capital Injections and Reinsurance," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1623-1650, August.
    3. Cheung, Eric C.K. & Landriault, David, 2010. "A generalized penalty function with the maximum surplus prior to ruin in a MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 127-134, February.
    4. Ahn, Soohan & Badescu, Andrei L. & Cheung, Eric C.K. & Kim, Jeong-Rae, 2018. "An IBNR–RBNS insurance risk model with marked Poisson arrivals," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 26-42.
    5. Xu, Ran & Woo, Jae-Kyung, 2020. "Optimal dividend and capital injection strategy with a penalty payment at ruin: Restricted dividend payments," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 1-16.
    6. Landriault, David & Shi, Tianxiang, 2015. "Occupation times in the MAP risk model," Insurance: Mathematics and Economics, Elsevier, vol. 60(C), pages 75-82.
    7. Philipp Lukas Strietzel & Anita Behme, 2022. "Moments of the Ruin Time in a Lévy Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 3075-3099, December.
    8. Wenguang Yu & Peng Guo & Qi Wang & Guofeng Guan & Qing Yang & Yujuan Huang & Xinliang Yu & Boyi Jin & Chaoran Cui, 2020. "On a Periodic Capital Injection and Barrier Dividend Strategy in the Compound Poisson Risk Model," Mathematics, MDPI, vol. 8(4), pages 1-21, April.
    9. Liu, Zhang & Chen, Ping & Hu, Yijun, 2020. "On the dual risk model with diffusion under a mixed dividend strategy," Applied Mathematics and Computation, Elsevier, vol. 376(C).
    10. Frostig, Esther & Pitts, Susan M. & Politis, Konstadinos, 2012. "The time to ruin and the number of claims until ruin for phase-type claims," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 19-25.
    11. Teng, Ye & Zhang, Zhimin, 2023. "On a time-changed Lévy risk model with capital injections and periodic observation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 214(C), pages 290-314.
    12. Zhang, Aili & Chen, Ping & Li, Shuanming & Wang, Wenyuan, 2022. "Risk modelling on liquidations with Lévy processes," Applied Mathematics and Computation, Elsevier, vol. 412(C).
    13. Zhimin Zhang & Eric C. K. Cheung, 2016. "The Markov Additive Risk Process Under an Erlangized Dividend Barrier Strategy," Methodology and Computing in Applied Probability, Springer, vol. 18(2), pages 275-306, June.
    14. Ramsden, Lewis & Papaioannou, Apostolos D., 2019. "On the time to ruin for a dependent delayed capital injection risk model," Applied Mathematics and Computation, Elsevier, vol. 352(C), pages 119-135.
    15. Hansjoerg Albrecher & Jevgenijs Ivanovs, 2013. "Power identities for L\'evy risk models under taxation and capital injections," Papers 1310.3052, arXiv.org, revised Mar 2014.
    16. Yue He & Reiichiro Kawai & Yasutaka Shimizu & Kazutoshi Yamazaki, 2022. "The Gerber-Shiu discounted penalty function: A review from practical perspectives," Papers 2203.10680, arXiv.org, revised Dec 2022.
    17. Josef Anton Strini & Stefan Thonhauser, 2019. "On a dividend problem with random funding," Papers 1901.06309, arXiv.org.
    18. Loeffen, Ronnie L. & Renaud, Jean-François, 2010. "De Finetti's optimal dividends problem with an affine penalty function at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 98-108, February.
    19. Cheung, Eric C.K. & Feng, Runhuan, 2013. "A unified analysis of claim costs up to ruin in a Markovian arrival risk model," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 98-109.
    20. Zan Yu & Lianzeng Zhang, 2024. "Computing the Gerber-Shiu function with interest and a constant dividend barrier by physics-informed neural networks," Papers 2401.04378, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:23:y:2021:i:3:d:10.1007_s11009-020-09796-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.