IDEAS home Printed from https://ideas.repec.org/a/cup/astinb/v48y2018i01p435-477_00.html
   My bibliography  Save this article

On The Compound Poisson Risk Model With Periodic Capital Injections

Author

Listed:
  • Zhang, Zhimin
  • Cheung, Eric C.K.
  • Yang, Hailiang

Abstract

The analysis of capital injection strategy in the literature of insurance risk models (e.g. Pafumi, 1998; Dickson and Waters, 2004) typically assumes that whenever the surplus becomes negative, the amount of shortfall is injected so that the company can continue its business forever. Recently, Nie et al. (2011) has proposed an alternative model in which capital is immediately injected to restore the surplus level to a positive level b when the surplus falls between zero and b, and the insurer is still subject to a positive ruin probability. Inspired by the idea of randomized observations in Albrecher et al. (2011b), in this paper, we further generalize Nie et al. (2011)'s model by assuming that capital injections are only allowed at a sequence of time points with inter-capital-injection times being Erlang distributed (so that deterministic time intervals can be approximated using the Erlangization technique in Asmussen et al. (2002)). When the claim amount is distributed as a combination of exponentials, explicit formulas for the Gerber–Shiu expected discounted penalty function (Gerber and Shiu, 1998) and the expected total discounted cost of capital injections before ruin are obtained. The derivations rely on a resolvent density associated with an Erlang random variable, which is shown to admit an explicit expression that is of independent interest as well. We shall provide numerical examples, including an application in pricing a perpetual reinsurance contract that makes the capital injections and demonstration of how to minimize the ruin probability via reinsurance. Minimization of the expected discounted capital injections plus a penalty applied at ruin with respect to the frequency of injections and the critical level b will also be illustrated numerically.

Suggested Citation

  • Zhang, Zhimin & Cheung, Eric C.K. & Yang, Hailiang, 2018. "On The Compound Poisson Risk Model With Periodic Capital Injections," ASTIN Bulletin, Cambridge University Press, vol. 48(1), pages 435-477, January.
  • Handle: RePEc:cup:astinb:v:48:y:2018:i:01:p:435-477_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0515036117000228/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wenguang Yu & Peng Guo & Qi Wang & Guofeng Guan & Qing Yang & Yujuan Huang & Xinliang Yu & Boyi Jin & Chaoran Cui, 2020. "On a Periodic Capital Injection and Barrier Dividend Strategy in the Compound Poisson Risk Model," Mathematics, MDPI, vol. 8(4), pages 1-21, April.
    2. Josef Anton Strini & Stefan Thonhauser, 2019. "On a dividend problem with random funding," Papers 1901.06309, arXiv.org.
    3. Xu, Ran & Woo, Jae-Kyung, 2020. "Optimal dividend and capital injection strategy with a penalty payment at ruin: Restricted dividend payments," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 1-16.
    4. A. S. Dibu & M. J. Jacob & Apostolos D. Papaioannou & Lewis Ramsden, 2021. "Delayed Capital Injections for a Risk Process with Markovian Arrivals," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 1057-1076, September.
    5. Xie, Jiayi & Zhang, Zhimin, 2021. "Finite-time dividend problems in a Lévy risk model under periodic observation," Applied Mathematics and Computation, Elsevier, vol. 398(C).
    6. Abouzar Bazyari, 2023. "On the Ruin Probabilities in a Discrete Time Insurance Risk Process with Capital Injections and Reinsurance," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1623-1650, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:astinb:v:48:y:2018:i:01:p:435-477_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/asb .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.