IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v22y2020i4d10.1007_s11009-017-9612-1.html
   My bibliography  Save this article

Laws of Large Numbers for Non-Homogeneous Markov Systems

Author

Listed:
  • P.-C. G. Vassiliou

    (University College London)

Abstract

In the present we establish Laws of Large Numbers for Non-Homogeneous Markov Systems and Cyclic Non-homogeneous Markov systems. We start with a theorem, where we establish, that for a NHMS under certain conditions, the fraction of time that a membership is in a certain state, asymptotically converges in mean square to the limit of the relative population structure of memberships in that state. We continue by proving a theorem which provides the conditions under which the mode of covergence is almost surely. We continue by proving under which conditions a Cyclic NHMS is Cesaro strongly ergodic. We then proceed to prove, that for a Cyclic NHMS under certain conditions the fraction of time that a membership is in a certain state, asymptotically converges in mean square to the limit of the relative population structure in the strongly Cesaro sense of memberships in that state. We then proceed to establish a founding Theorem, which provides the conditions under which, the relative population structure asymptotically converges in the strongly Cesaro sense with geometrical rate. This theorem is the basic instrument missing to prove, under what conditions the Law of Large Numbers for a Cycl-NHMS is with almost surely mode of convergence. Finally, we present two applications firstly for geriatric and stroke patients in a hospital and secondly for the population of students in a University system.

Suggested Citation

  • P.-C. G. Vassiliou, 2020. "Laws of Large Numbers for Non-Homogeneous Markov Systems," Methodology and Computing in Applied Probability, Springer, vol. 22(4), pages 1631-1658, December.
  • Handle: RePEc:spr:metcap:v:22:y:2020:i:4:d:10.1007_s11009-017-9612-1
    DOI: 10.1007/s11009-017-9612-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-017-9612-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-017-9612-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. S McClean & P Millard, 2007. "Where to treat the older patient? Can Markov models help us better understand the relationship between hospital and community care?," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 255-261, February.
    2. Lalit Garg & Sally McClean & Brian Meenan & Peter Millard, 2010. "A non-homogeneous discrete time Markov model for admission scheduling and resource planning in a cost or capacity constrained healthcare system," Health Care Management Science, Springer, vol. 13(2), pages 155-169, June.
    3. Sally McClean & Peter Millard, 1998. "A three compartment model of the patient flows in a geriatric department: a decision support approach," Health Care Management Science, Springer, vol. 1(2), pages 159-163, October.
    4. G. J. Taylor & S. I. McClean & P. H. Millard, 2000. "Stochastic models of geriatric patient bed occupancy behaviour," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 163(1), pages 39-48.
    5. P.-C. G. Vassiliou & A. C. Georgiou, 1990. "Asymptotically Attainable Structures in Nonhomogeneous Markov Systems," Operations Research, INFORMS, vol. 38(3), pages 537-545, June.
    6. Vassiliou, P. -C. G., 1986. "Asymptotic variability of nonhomogeneous Markov systems under cyclic behaviour," European Journal of Operational Research, Elsevier, vol. 27(2), pages 215-228, October.
    7. F.I. Ugwuowo & S.I. McClean, 2000. "Modelling heterogeneity in a manpower system: a review," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 16(2), pages 99-110, April.
    8. P.‐C. G. Vassiliou, 1997. "The evolution of the theory of non‐homogeneous Markov systems," Applied Stochastic Models and Data Analysis, John Wiley & Sons, vol. 13(3‐4), pages 159-176, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodi Lykou & George Tsaklidis, 2021. "Particle Filtering: A Priori Estimation of Observational Errors of a State-Space Model with Linear Observation Equation," Mathematics, MDPI, vol. 9(12), pages 1-16, June.
    2. P. -C. G. Vassiliou, 2020. "Rate of Convergence and Periodicity of the Expected Population Structure of Markov Systems that Live in a General State Space," Mathematics, MDPI, vol. 8(6), pages 1-23, June.
    3. P.-C.G. Vassiliou, 2021. "Non-Homogeneous Markov Set Systems," Mathematics, MDPI, vol. 9(5), pages 1-25, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. P.-C.G. Vassiliou, 2021. "Non-Homogeneous Markov Set Systems," Mathematics, MDPI, vol. 9(5), pages 1-25, February.
    2. Jennifer Gillespie & Sally McClean & Bryan Scotney & Lalit Garg & Maria Barton & Ken Fullerton, 2011. "Costing hospital resources for stroke patients using phase-type models," Health Care Management Science, Springer, vol. 14(3), pages 279-291, September.
    3. Andreas C. Georgiou & Alexandra Papadopoulou & Pavlos Kolias & Haris Palikrousis & Evanthia Farmakioti, 2021. "On State Occupancies, First Passage Times and Duration in Non-Homogeneous Semi-Markov Chains," Mathematics, MDPI, vol. 9(15), pages 1-17, July.
    4. Gang Du & Xi Liang & Chuanwang Sun, 2017. "Scheduling Optimization of Home Health Care Service Considering Patients’ Priorities and Time Windows," Sustainability, MDPI, vol. 9(2), pages 1-22, February.
    5. Tsantas, N., 1995. "Stochastic analysis of a non-homogeneous Markov system," European Journal of Operational Research, Elsevier, vol. 85(3), pages 670-685, September.
    6. Broyles, James R. & Cochran, Jeffery K. & Montgomery, Douglas C., 2010. "A statistical Markov chain approximation of transient hospital inpatient inventory," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1645-1657, December.
    7. P.-C. G. Vassiliou & T. P. Moysiadis, 2010. "$\boldsymbol{\mathcal{G}-}$ Inhomogeneous Markov Systems of High Order," Methodology and Computing in Applied Probability, Springer, vol. 12(2), pages 271-292, June.
    8. G. Vasiliadis & G. Tsaklidis, 2009. "On the Distributions of the State Sizes of Closed Continuous Time Homogeneous Markov Systems," Methodology and Computing in Applied Probability, Springer, vol. 11(4), pages 561-582, December.
    9. Tim De Feyter & Marie-Anne Guerry & Komarudin, 2017. "Optimizing cost-effectiveness in a stochastic Markov manpower planning system under control by recruitment," Annals of Operations Research, Springer, vol. 253(1), pages 117-131, June.
    10. George Vasiliadis, 2012. "On the Distributions of the State Sizes of the Continuous Time Homogeneous Markov System with Finite State Capacities," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 863-882, September.
    11. G. Vasiliadis & G. Tsaklidis, 2008. "On the Distributions of the State Sizes of Discrete Time Homogeneous Markov Systems," Methodology and Computing in Applied Probability, Springer, vol. 10(1), pages 55-71, March.
    12. P. -C. G. Vassiliou, 2020. "Rate of Convergence and Periodicity of the Expected Population Structure of Markov Systems that Live in a General State Space," Mathematics, MDPI, vol. 8(6), pages 1-23, June.
    13. Peter J. H. Hulshof & Martijn R. K. Mes & Richard J. Boucherie & Erwin W. Hans, 2016. "Patient admission planning using Approximate Dynamic Programming," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 30-61, June.
    14. Dimitriou, V.A. & Georgiou, A.C. & Tsantas, N., 2013. "The multivariate non-homogeneous Markov manpower system in a departmental mobility framework," European Journal of Operational Research, Elsevier, vol. 228(1), pages 112-121.
    15. Xiang Zhong & Jie Song & Jingshan Li & Susan M. Ertl & Lauren Fiedler, 2016. "Design and analysis of gastroenterology (GI) clinic in Digestive Health Center of University of Wisconsin Health," Flexible Services and Manufacturing Journal, Springer, vol. 28(1), pages 90-119, June.
    16. O. Zeynep Akşin, 2007. "On valuing appreciating human assets in services," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(2), pages 221-235, March.
    17. S McClean & P Millard, 2007. "Where to treat the older patient? Can Markov models help us better understand the relationship between hospital and community care?," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(2), pages 255-261, February.
    18. Zexian Zeng & Zhenghao Fan & Xiaolei Xie & Colleen H. Swartz & Paul DePriest & Jingshan Li, 2020. "A two-level iteration approach for modeling and analysis of rapid response process with multiple deteriorating patients," Flexible Services and Manufacturing Journal, Springer, vol. 32(1), pages 35-71, March.
    19. Brecht Verbeken & Marie-Anne Guerry, 2024. "Attainability for Markov and Semi-Markov Chains," Mathematics, MDPI, vol. 12(8), pages 1-14, April.
    20. Georgiou, Andreas C. & Thanassoulis, Emmanuel & Papadopoulou, Alexandra, 2022. "Using data envelopment analysis in markovian decision making," European Journal of Operational Research, Elsevier, vol. 298(1), pages 276-292.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:22:y:2020:i:4:d:10.1007_s11009-017-9612-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.