IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v20y2018i4d10.1007_s11009-018-9637-0.html
   My bibliography  Save this article

Detection and Analysis of Spikes in a Random Sequence

Author

Listed:
  • Anirban Dasgupta

    (Purdue University)

  • Bo Li

    (University of Illinois at Urbana-Champaign)

Abstract

Motivated by the more frequent natural and anthropogenic hazards, we revisit the problem of assessing whether an apparent temporal clustering in a sequence of randomly occurring events is a genuine surprise and should call for an examination. We study the problem in both discrete and continuous time formulation. In the discrete formulation, the problem reduces to deriving the probability that p independent people all have birthdays within d days of each other. We provide an analytical expression for a warning limit such that if a subset of p people among n are observed to have birthdays within d days of each other and d is smaller than our warning limit, then it should be treated as a surprising cluster. In the continuous time framework, three different sets of results are given. First, we provide an asymptotic analysis of the problem by embedding it into an extreme value problem for high order spacings of iid samples from the U[0, 1] density. Second, a novel analytical nonasymptotic bound is derived by using certain tools of empirical process theory. Finally, the required probability is approximated by using various bounds and asymptotic results on the supremum of the scanning process of a one dimensional stationary Poisson process. We apply the theories to climate change related datasets, datasets on temperatures, and mass shooting records in the United States. These real data applications of our theoretical methods lead to supporting evidence for climate change and recent spikes in gun violence.

Suggested Citation

  • Anirban Dasgupta & Bo Li, 2018. "Detection and Analysis of Spikes in a Random Sequence," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1429-1451, December.
  • Handle: RePEc:spr:metcap:v:20:y:2018:i:4:d:10.1007_s11009-018-9637-0
    DOI: 10.1007/s11009-018-9637-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-018-9637-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-018-9637-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robbins, Michael W. & Lund, Robert B. & Gallagher, Colin M. & Lu, QiQi, 2011. "Changepoints in the North Atlantic Tropical Cyclone Record," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 89-99.
    2. Janson, Svante, 1984. "Bounds on the distributions of extremal values of a scanning process," Stochastic Processes and their Applications, Elsevier, vol. 18(2), pages 313-328, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Long Feng & Changliang Zou & Zhaojun Wang & Lixing Zhu, 2015. "Robust comparison of regression curves," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 185-204, March.
    2. Michael W. Robbins & Colin M. Gallagher & Robert B. Lund, 2016. "A General Regression Changepoint Test for Time Series Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 670-683, April.
    3. Fuqi Chen & Rogemar Mamon & Sévérien Nkurunziza, 2018. "Inference for a change-point problem under a generalised Ornstein–Uhlenbeck setting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 807-853, August.
    4. Yi-Shen Lin & Xenos Chang-Shuo Lin & Daniel Wei-Chung Miao & Yi-Ching Yao, 2020. "Corrected Discrete Approximations for Multiple Window Scan Statistics of One-Dimensional Poisson Processes," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 237-265, March.
    5. Sévérien Nkurunziza & Lei Shen, 2020. "Inference in a multivariate generalized mean-reverting process with a change-point," Statistical Inference for Stochastic Processes, Springer, vol. 23(1), pages 199-226, April.
    6. Sévérien Nkurunziza & Pei Patrick Zhang, 2018. "Estimation and testing in generalized mean-reverting processes with change-point," Statistical Inference for Stochastic Processes, Springer, vol. 21(1), pages 191-215, April.
    7. Liu, Bin & Zhou, Cheng & Zhang, Xinsheng, 2019. "A tail adaptive approach for change point detection," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 33-48.
    8. Mo Li & QiQi Lu, 2022. "Changepoint detection in autocorrelated ordinal categorical time series," Environmetrics, John Wiley & Sons, Ltd., vol. 33(7), November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:20:y:2018:i:4:d:10.1007_s11009-018-9637-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.