IDEAS home Printed from https://ideas.repec.org/a/hin/jnlaaa/862602.html
   My bibliography  Save this article

Bernstein-Type Inequality for Widely Dependent Sequence and Its Application to Nonparametric Regression Models

Author

Listed:
  • Aiting Shen

Abstract

We present the Bernstein-type inequality for widely dependent random variables. By using the Bernstein-type inequality and the truncated method, we further study the strong consistency of estimator of fixed design regression model under widely dependent random variables, which generalizes the corresponding one of independent random variables. As an application, the strong consistency for the nearest neighbor estimator is obtained.

Suggested Citation

  • Aiting Shen, 2013. "Bernstein-Type Inequality for Widely Dependent Sequence and Its Application to Nonparametric Regression Models," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-9, July.
  • Handle: RePEc:hin:jnlaaa:862602
    DOI: 10.1155/2013/862602
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/AAA/2013/862602.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/AAA/2013/862602.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2013/862602?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aiting Shen & Siyao Zhang, 2021. "On Complete Consistency for the Estimator of Nonparametric Regression Model Based on Asymptotically Almost Negatively Associated Errors," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1285-1307, December.
    2. Aiting Shen & Huiling Tao & Xuejun Wang, 2020. "The asymptotic properties for the estimators of the survival function and failure rate function based on WOD samples," Statistical Papers, Springer, vol. 61(6), pages 2671-2684, December.
    3. Mengmei Xi & Rui Wang & Zhaoyang Cheng & Xuejun Wang, 2020. "Some convergence properties for partial sums of widely orthant dependent random variables and their statistical applications," Statistical Papers, Springer, vol. 61(4), pages 1663-1684, August.
    4. Xin Deng & Xuejun Wang, 2018. "Asymptotic Property of M Estimator in Classical Linear Models Under Dependent Random Errors," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1069-1090, December.
    5. Yi Wu & Wei Yu & Xuejun Wang, 2022. "Strong representations of the Kaplan–Meier estimator and hazard estimator with censored widely orthant dependent data," Computational Statistics, Springer, vol. 37(1), pages 383-402, March.
    6. Yi Wu & Xuejun Wang & Aiting Shen, 2023. "Strong Convergence for Weighted Sums of Widely Orthant Dependent Random Variables and Applications," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-28, March.
    7. Xin Deng & Xuejun Wang, 2020. "An exponential inequality and its application to M estimators in multiple linear models," Statistical Papers, Springer, vol. 61(4), pages 1607-1627, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlaaa:862602. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.