IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v66y2004i4p383-393.html
   My bibliography  Save this article

M-estimation for linear models with spatially-correlated errors

Author

Listed:
  • Cui, Hengjian
  • He, Xuming
  • Ng, Kai W.

Abstract

When a linear model is used to analyze spatially correlated data, but the form of the spatial correlogram is unknown or difficult to specify, it is not straightforward to carry out valid statistical inference on regression parameters. We derive the asymptotic distributions for a class of M-estimators, which includes the least squares and the least absolute deviation, so as to provide the basis for valid large-sample inference even when the spatial correlation structure is not taken into account in estimating the regression coefficients.

Suggested Citation

  • Cui, Hengjian & He, Xuming & Ng, Kai W., 2004. "M-estimation for linear models with spatially-correlated errors," Statistics & Probability Letters, Elsevier, vol. 66(4), pages 383-393, March.
  • Handle: RePEc:eee:stapro:v:66:y:2004:i:4:p:383-393
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-7152(03)00330-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanlin Tang & Xinyuan Song & Zhongyi Zhu, 2015. "Variable selection via composite quantile regression with dependent errors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(1), pages 1-20, February.
    2. Zhou, Zhou & Wu, Wei Biao, 2011. "On linear models with long memory and heavy-tailed errors," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 349-362, February.
    3. Yu Zhang, 2023. "Asymptotic Normality of M-Estimator in Linear Regression Model with Asymptotically Almost Negatively Associated Errors," Mathematics, MDPI, vol. 11(18), pages 1-16, September.
    4. Xin Deng & Xuejun Wang, 2020. "An exponential inequality and its application to M estimators in multiple linear models," Statistical Papers, Springer, vol. 61(4), pages 1607-1627, August.
    5. Tang, Niansheng & Wang, Wenjun, 2019. "Robust estimation of generalized estimating equations with finite mixture correlation matrices and missing covariates at random for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 640-655.
    6. Dabo-Niang, Sophie & Thiam, Baba, 2010. "Robust quantile estimation and prediction for spatial processes," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1447-1458, September.
    7. Xin Deng & Xuejun Wang, 2018. "Asymptotic Property of M Estimator in Classical Linear Models Under Dependent Random Errors," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1069-1090, December.
    8. Takuma Yoshida, 2019. "Two stage smoothing in additive models with missing covariates," Statistical Papers, Springer, vol. 60(6), pages 1803-1826, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:66:y:2004:i:4:p:383-393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.