IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v12y2010i1d10.1007_s11009-008-9102-6.html
   My bibliography  Save this article

Lundberg-type Bounds and Asymptotics for the Moments of the Time to Ruin

Author

Listed:
  • Vaios Dermitzakis

    (University of Piraeus)

  • Susan M. Pitts

    (University of Cambridge)

  • Konstadinos Politis

    (University of Piraeus)

Abstract

We obtain analogues of Lundberg’s inequality and the Cramér—Lundberg asymptotic relationship for the k-th moment of the time to ruin in the classical risk model. We also derive the asymptotic behaviour of the mean time to ruin when the claim size distribution has a heavy or intermediate tail.

Suggested Citation

  • Vaios Dermitzakis & Susan M. Pitts & Konstadinos Politis, 2010. "Lundberg-type Bounds and Asymptotics for the Moments of the Time to Ruin," Methodology and Computing in Applied Probability, Springer, vol. 12(1), pages 155-175, March.
  • Handle: RePEc:spr:metcap:v:12:y:2010:i:1:d:10.1007_s11009-008-9102-6
    DOI: 10.1007/s11009-008-9102-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-008-9102-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-008-9102-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, X. Sheldon & Willmot, Gordon E., 2000. "The moments of the time of ruin, the surplus before ruin, and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 19-44, August.
    2. Gerber, Hans U. & Goovaerts, Marc J. & Kaas, Rob, 1987. "On the Probability and Severity of Ruin," ASTIN Bulletin, Cambridge University Press, vol. 17(2), pages 151-163, November.
    3. Dickson, D. C. M., 2001. "Lundberg Approximations for Compound Distributions with Insurance Applications. By G. E. Willmot and X. S. Lin. (Springer, 2000)," British Actuarial Journal, Cambridge University Press, vol. 7(4), pages 690-691, October.
    4. Embrechts, Paul & Goldie, Charles M., 1982. "On convolution tails," Stochastic Processes and their Applications, Elsevier, vol. 13(3), pages 263-278, September.
    5. Embrechts, P. & Veraverbeke, N., 1982. "Estimates for the probability of ruin with special emphasis on the possibility of large claims," Insurance: Mathematics and Economics, Elsevier, vol. 1(1), pages 55-72, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Georgios Psarrakos, 2015. "On the Integrated Tail of the Deficit in the Renewal Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 497-513, June.
    2. Vaios Dermitzakis & Konstadinos Politis, 2011. "Asymptotics for the Moments of the Time to Ruin for the Compound Poisson Model Perturbed by Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 749-761, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Drekic, Steve & Stafford, James E. & Willmot, Gordon E., 2004. "Symbolic calculation of the moments of the time of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 109-120, February.
    2. Sheldon Lin, X. & E. Willmot, Gordon & Drekic, Steve, 2003. "The classical risk model with a constant dividend barrier: analysis of the Gerber-Shiu discounted penalty function," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 551-566, December.
    3. Psarrakos, Georgios, 2009. "Asymptotic results for heavy-tailed distributions using defective renewal equations," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 774-779, March.
    4. Cheng, Yebin & Tang, Qihe & Yang, Hailiang, 2002. "Approximations for moments of deficit at ruin with exponential and subexponential claims," Statistics & Probability Letters, Elsevier, vol. 59(4), pages 367-378, October.
    5. Georgios Psarrakos, 2015. "On the Integrated Tail of the Deficit in the Renewal Risk Model," Methodology and Computing in Applied Probability, Springer, vol. 17(2), pages 497-513, June.
    6. Franck Adékambi & Essodina Takouda, 2020. "Gerber–Shiu Function in a Class of Delayed and Perturbed Risk Model with Dependence," Risks, MDPI, vol. 8(1), pages 1-25, March.
    7. Psarrakos, Georgios & Politis, Konstadinos, 2008. "Tail bounds for the joint distribution of the surplus prior to and at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 163-176, February.
    8. Tang, Qihe & Wei, Li, 2010. "Asymptotic aspects of the Gerber-Shiu function in the renewal risk model using Wiener-Hopf factorization and convolution equivalence," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 19-31, February.
    9. Lee, Wing Yan & Willmot, Gordon E., 2014. "On the moments of the time to ruin in dependent Sparre Andersen models with emphasis on Coxian interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 1-10.
    10. Vaios Dermitzakis & Konstadinos Politis, 2011. "Asymptotics for the Moments of the Time to Ruin for the Compound Poisson Model Perturbed by Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 749-761, December.
    11. M. S. Sgibnev, 1998. "On the Asymptotic Behavior of the Harmonic Renewal Measure," Journal of Theoretical Probability, Springer, vol. 11(2), pages 371-382, April.
    12. Griffin, Philip S. & Maller, Ross A. & Schaik, Kees van, 2012. "Asymptotic distributions of the overshoot and undershoots for the Lévy insurance risk process in the Cramér and convolution equivalent cases," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 382-392.
    13. Chadjiconstantinidis, Stathis & Politis, Konstadinos, 2007. "Two-sided bounds for the distribution of the deficit at ruin in the renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 41-52, July.
    14. Willmot, Gordon E., 2002. "Compound geometric residual lifetime distributions and the deficit at ruin," Insurance: Mathematics and Economics, Elsevier, vol. 30(3), pages 421-438, June.
    15. Wang, Nan & Politis, Konstadinos, 2002. "Some characteristics of a surplus process in the presence of an upper barrier," Insurance: Mathematics and Economics, Elsevier, vol. 30(2), pages 231-241, April.
    16. Woo, Jae-Kyung, 2011. "Refinements of two-sided bounds for renewal equations," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 189-196, March.
    17. Toshiro Watanabe & Kouji Yamamuro, 2010. "Local Subexponentiality and Self-decomposability," Journal of Theoretical Probability, Springer, vol. 23(4), pages 1039-1067, December.
    18. Søren Asmussen & Serguei Foss & Dmitry Korshunov, 2003. "Asymptotics for Sums of Random Variables with Local Subexponential Behaviour," Journal of Theoretical Probability, Springer, vol. 16(2), pages 489-518, April.
    19. Willmot, Gordon E., 2007. "On the discounted penalty function in the renewal risk model with general interclaim times," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 17-31, July.
    20. Willmot, Gordon E. & Dickson, David C. M., 2003. "The Gerber-Shiu discounted penalty function in the stationary renewal risk model," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 403-411, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:12:y:2010:i:1:d:10.1007_s11009-008-9102-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.