IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v93y2021i1d10.1007_s00186-020-00729-3.html
   My bibliography  Save this article

A multi-objective approach for PH-graphs with applications to stochastic shortest paths

Author

Listed:
  • Peter Buchholz

    (TU Dortmund)

  • Iryna Dohndorf

    (TU Dortmund)

Abstract

Stochastic shortest path problems (SSPPs) have many applications in practice and are subject of ongoing research for many years. This paper considers a variant of SSPPs where times or costs to pass an edge in a graph are, possibly correlated, random variables. There are two general goals one can aim for, the minimization of the expected costs to reach the destination or the maximization of the probability to reach the destination within a given budget. Often one is interested in policies that build a compromise between different goals which results in multi-objective problems. In this paper, an algorithm to compute the convex hull of Pareto optimal policies that consider expected costs and probabilities of falling below given budgets is developed. The approach uses the recently published class of PH-graphs that allow one to map SSPPs, even with generally distributed and correlated costs associated to edges, on Markov decision processes (MDPs) and apply the available techniques for MDPs to compute optimal policies.

Suggested Citation

  • Peter Buchholz & Iryna Dohndorf, 2021. "A multi-objective approach for PH-graphs with applications to stochastic shortest paths," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 153-178, February.
  • Handle: RePEc:spr:mathme:v:93:y:2021:i:1:d:10.1007_s00186-020-00729-3
    DOI: 10.1007/s00186-020-00729-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00186-020-00729-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00186-020-00729-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koenig, Matthias & Meissner, Joern, 2015. "Value-at-risk optimal policies for revenue management problems," International Journal of Production Economics, Elsevier, vol. 166(C), pages 11-19.
    2. Richard F. Serfozo, 1979. "Technical Note—An Equivalence Between Continuous and Discrete Time Markov Decision Processes," Operations Research, INFORMS, vol. 27(3), pages 616-620, June.
    3. G Barbarosoǧlu & Y Arda, 2004. "A two-stage stochastic programming framework for transportation planning in disaster response," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(1), pages 43-53, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuyu Wang & Xuefei Ge & Yan Li & Jingjing Zheng & Weichen Zheng, 2023. "Optimising the Distribution of Multi-Cycle Emergency Supplies after a Disaster," Sustainability, MDPI, vol. 15(2), pages 1-26, January.
    2. Wang, Haijun & Du, Lijing & Ma, Shihua, 2014. "Multi-objective open location-routing model with split delivery for optimized relief distribution in post-earthquake," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 160-179.
    3. Zhaoping Tang & Jianping Sun, 2018. "Multi objective optimization of railway emergency rescue resource allocation and decision," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(3), pages 696-702, June.
    4. Cailin Wang & Jidong Wu & Xin He & Mengqi Ye & Wenhui Liu & Rumei Tang, 2018. "Emerging Trends and New Developments in Disaster Research after the 2008 Wenchuan Earthquake," IJERPH, MDPI, vol. 16(1), pages 1-19, December.
    5. Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).
    6. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    7. Dilsu Binnaz Ozkapici & Mustafa Alp Ertem & Haluk Aygüneş, 2016. "Intermodal humanitarian logistics model based on maritime transportation in Istanbul," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 345-364, August.
    8. Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
    9. Allahviranloo, Mahdieh & Recker, Will, 2013. "Daily activity pattern recognition by using support vector machines with multiple classes," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 16-43.
    10. Lu, Chung-Cheng & Ying, Kuo-Ching & Chen, Hui-Ju, 2016. "Real-time relief distribution in the aftermath of disasters – A rolling horizon approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 1-20.
    11. Wilson, Duncan T. & Hawe, Glenn I. & Coates, Graham & Crouch, Roger S., 2013. "A multi-objective combinatorial model of casualty processing in major incident response," European Journal of Operational Research, Elsevier, vol. 230(3), pages 643-655.
    12. Rafiei, Rezvan & Huang, Kai & Verma, Manish, 2022. "Cash versus in-kind transfer programs in humanitarian operations: An optimization program and a case study," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    13. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    14. Yagci Sokat, Kezban & Dolinskaya, Irina S. & Smilowitz, Karen & Bank, Ryan, 2018. "Incomplete information imputation in limited data environments with application to disaster response," European Journal of Operational Research, Elsevier, vol. 269(2), pages 466-485.
    15. Pengxia Zhao & Tie Li & Biao Wang & Ming Li & Yu Wang & Xiahui Guo & Yue Yu, 2022. "The Scenario Construction and Evolution Method of Casualties in Liquid Ammonia Leakage Based on Bayesian Network," IJERPH, MDPI, vol. 19(24), pages 1-22, December.
    16. Eghbal Akhlaghi, Vahid & Campbell, Ann Melissa, 2022. "The two-echelon island fuel distribution problem," European Journal of Operational Research, Elsevier, vol. 302(3), pages 999-1017.
    17. Alem, Douglas & Clark, Alistair & Moreno, Alfredo, 2016. "Stochastic network models for logistics planning in disaster relief," European Journal of Operational Research, Elsevier, vol. 255(1), pages 187-206.
    18. Alexander Zadorojniy & Guy Even & Adam Shwartz, 2009. "A Strongly Polynomial Algorithm for Controlled Queues," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 992-1007, November.
    19. Rawls, Carmen G. & Turnquist, Mark A., 2012. "Pre-positioning and dynamic delivery planning for short-term response following a natural disaster," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 46-54.
    20. Xiuli Chao & Frank Y. Chen, 2005. "An Optimal Production and Shutdown Strategy when a Supplier Offers an Incentive Program," Manufacturing & Service Operations Management, INFORMS, vol. 7(2), pages 130-143, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:93:y:2021:i:1:d:10.1007_s00186-020-00729-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.