IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v72y2010i2p311-326.html
   My bibliography  Save this article

Asymptotic expansions of defective renewal equations with applications to perturbed risk models and processor sharing queues

Author

Listed:
  • Jose Blanchet
  • Bert Zwart

Abstract

We consider asymptotic expansions for defective and excessive renewal equations that are close to being proper. These expansions are applied to the analysis of processor sharing queues and perturbed risk models, and yield approximations that can be useful in applications where moments are computable, but the distribution is not. Copyright Springer-Verlag 2010

Suggested Citation

  • Jose Blanchet & Bert Zwart, 2010. "Asymptotic expansions of defective renewal equations with applications to perturbed risk models and processor sharing queues," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(2), pages 311-326, October.
  • Handle: RePEc:spr:mathme:v:72:y:2010:i:2:p:311-326
    DOI: 10.1007/s00186-010-0321-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00186-010-0321-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00186-010-0321-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qiang Zhen & Charles Knessl, 2010. "Asymptotic expansions for the sojourn time distribution in the M/G/1-PS queue," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(2), pages 201-244, April.
    2. Gyllenberg, Mats & S. Silvestrov, Dmitrii, 2000. "Cramer-Lundberg approximation for nonlinearly perturbed risk processes," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 75-90, February.
    3. Dufresne, Francois & Gerber, Hans U., 1991. "Risk theory for the compound Poisson process that is perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 10(1), pages 51-59, March.
    4. Gyllenberg, Mats & Silvestrov, Dmitrii S., 2000. "Nonlinearly perturbed regenerative processes and pseudo-stationary phenomena for stochastic systems," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 1-27, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vatamidou, E. & Adan, I.J.B.F. & Vlasiou, M. & Zwart, B., 2013. "Corrected phase-type approximations of heavy-tailed risk models using perturbation analysis," Insurance: Mathematics and Economics, Elsevier, vol. 53(2), pages 366-378.
    2. Mikael Petersson, 2017. "Quasi-Stationary Asymptotics for Perturbed Semi-Markov Processes in Discrete Time," Methodology and Computing in Applied Probability, Springer, vol. 19(4), pages 1047-1074, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Franck Adékambi & Essodina Takouda, 2020. "Gerber–Shiu Function in a Class of Delayed and Perturbed Risk Model with Dependence," Risks, MDPI, vol. 8(1), pages 1-25, March.
    2. Zhang, Aili & Li, Shuanming & Wang, Wenyuan, 2023. "A scale function based approach for solving integral-differential equations in insurance risk models," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    3. Avram, F. & Pistorius, M., 2014. "On matrix exponential approximations of ruin probabilities for the classic and Brownian perturbed Cramér–Lundberg processes," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 57-64.
    4. Kolkovska, Ekaterina T. & Martín-González, Ehyter M., 2016. "Gerber–Shiu functionals for classical risk processes perturbed by an α-stable motion," Insurance: Mathematics and Economics, Elsevier, vol. 66(C), pages 22-28.
    5. Yang, Hu & Zhang, Zhimin, 2009. "The perturbed compound Poisson risk model with multi-layer dividend strategy," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 70-78, January.
    6. Christensen, Bent Jesper & Parra-Alvarez, Juan Carlos & Serrano, Rafael, 2021. "Optimal control of investment, premium and deductible for a non-life insurance company," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 384-405.
    7. Liang, Xiaoqing & Liang, Zhibin & Young, Virginia R., 2020. "Optimal reinsurance under the mean–variance premium principle to minimize the probability of ruin," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 128-146.
    8. Constantinescu, Corina & Hashorva, Enkelejd & Ji, Lanpeng, 2011. "Archimedean copulas in finite and infinite dimensions—with application to ruin problems," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 487-495.
    9. Chi, Yichun, 2010. "Analysis of the expected discounted penalty function for a general jump-diffusion risk model and applications in finance," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 385-396, April.
    10. Tsai, Cary Chi-Liang & Willmot, Gordon E., 2002. "A generalized defective renewal equation for the surplus process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 30(1), pages 51-66, February.
    11. Chi, Yichun & Lin, X. Sheldon, 2011. "On the threshold dividend strategy for a generalized jump-diffusion risk model," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 326-337, May.
    12. Gatto, Riccardo, 2008. "A saddlepoint approximation to the probability of ruin in the compound Poisson process with diffusion," Statistics & Probability Letters, Elsevier, vol. 78(13), pages 1948-1954, September.
    13. Vaios Dermitzakis & Konstadinos Politis, 2011. "Asymptotics for the Moments of the Time to Ruin for the Compound Poisson Model Perturbed by Diffusion," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 749-761, December.
    14. Psarrakos, Georgios, 2010. "On the DFR property of the compound geometric distribution with applications in risk theory," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 428-433, December.
    15. Yu-Ting Chen & Cheng Few Lee & Yuan-Chung Sheu, 2020. "An ODE Approach for the Expected Discounted Penalty at Ruin in a Jump-Diffusion Model," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 41, pages 1561-1598, World Scientific Publishing Co. Pte. Ltd..
    16. Shimizu, Yasutaka, 2009. "A new aspect of a risk process and its statistical inference," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 70-77, February.
    17. Chiu, S. N. & Yin, C. C., 2003. "The time of ruin, the surplus prior to ruin and the deficit at ruin for the classical risk process perturbed by diffusion," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 59-66, August.
    18. Wang, Guojing & Wu, Rong, 2008. "The expected discounted penalty function for the perturbed compound Poisson risk process with constant interest," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 59-64, February.
    19. Aleksandar Arandjelovi'c & Julia Eisenberg, 2024. "Reinsurance with neural networks," Papers 2408.06168, arXiv.org.
    20. Zhang, Chunsheng & Wang, Guojing, 2003. "The joint density function of three characteristics on jump-diffusion risk process," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 445-455, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:72:y:2010:i:2:p:311-326. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.