IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v124y2014i1p961-983.html
   My bibliography  Save this article

Zero-sum risk-sensitive stochastic games on a countable state space

Author

Listed:
  • Basu, Arnab
  • Ghosh, Mrinal Kanti

Abstract

Infinite horizon discounted-cost and ergodic-cost risk-sensitive zero-sum stochastic games for controlled Markov chains with countably many states are analyzed. Upper and lower values for these games are established. The existence of value and saddle-point equilibria in the class of Markov strategies is proved for the discounted-cost game. The existence of value and saddle-point equilibria in the class of stationary strategies is proved under the uniform ergodicity condition for the ergodic-cost game. The value of the ergodic-cost game happens to be the product of the inverse of the risk-sensitivity factor and the logarithm of the common Perron–Frobenius eigenvalue of the associated controlled nonlinear kernels.

Suggested Citation

  • Basu, Arnab & Ghosh, Mrinal Kanti, 2014. "Zero-sum risk-sensitive stochastic games on a countable state space," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 961-983.
  • Handle: RePEc:eee:spapps:v:124:y:2014:i:1:p:961-983
    DOI: 10.1016/j.spa.2013.09.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414913002469
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2013.09.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rolando Cavazos-Cadena & Emmanuel Fernández-Gaucherand, 1999. "Controlled Markov chains with risk-sensitive criteria: Average cost, optimality equations, and optimal solutions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 49(2), pages 299-324, April.
    2. Uriel G. Rothblum, 1984. "Multiplicative Markov Decision Chains," Mathematics of Operations Research, INFORMS, vol. 9(1), pages 6-24, February.
    3. El-Karoui, N. & Hamadène, S., 2003. "BSDEs and risk-sensitive control, zero-sum and nonzero-sum game problems of stochastic functional differential equations," Stochastic Processes and their Applications, Elsevier, vol. 107(1), pages 145-169, September.
    4. V. S. Borkar & S. P. Meyn, 2002. "Risk-Sensitive Optimal Control for Markov Decision Processes with Monotone Cost," Mathematics of Operations Research, INFORMS, vol. 27(1), pages 192-209, February.
    5. Ronald A. Howard & James E. Matheson, 1972. "Risk-Sensitive Markov Decision Processes," Management Science, INFORMS, vol. 18(7), pages 356-369, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gustavo Portillo-Ramírez & Rolando Cavazos-Cadena & Hugo Cruz-Suárez, 2023. "Contractive approximations in average Markov decision chains driven by a risk-seeking controller," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 75-91, August.
    2. Subrata Golui & Chandan Pal & Subhamay Saha, 2022. "Continuous-Time Zero-Sum Games for Markov Decision Processes with Discounted Risk-Sensitive Cost Criterion," Dynamic Games and Applications, Springer, vol. 12(2), pages 485-512, June.
    3. Bäuerle, Nicole & Rieder, Ulrich, 2017. "Zero-sum risk-sensitive stochastic games," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 622-642.
    4. Wenzhao Zhang & Congying Liu, 2024. "Discrete-time stopping games with risk-sensitive discounted cost criterion," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 100(2), pages 437-466, October.
    5. Arnab Basu & Mrinal K. Ghosh, 2018. "Nonzero-Sum Risk-Sensitive Stochastic Games on a Countable State Space," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 516-532, May.
    6. Ghosh, Mrinal K. & Golui, Subrata & Pal, Chandan & Pradhan, Somnath, 2023. "Discrete-time zero-sum games for Markov chains with risk-sensitive average cost criterion," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 40-74.
    7. Qingda Wei & Xian Chen, 2019. "Risk-Sensitive Average Equilibria for Discrete-Time Stochastic Games," Dynamic Games and Applications, Springer, vol. 9(2), pages 521-549, June.
    8. Chen, Fang & Guo, Xianping, 2023. "Two-person zero-sum risk-sensitive stochastic games with incomplete reward information on one side," Stochastic Processes and their Applications, Elsevier, vol. 165(C), pages 218-245.
    9. Qingda Wei & Xian Chen, 2021. "Nonzero-sum Risk-Sensitive Average Stochastic Games: The Case of Unbounded Costs," Dynamic Games and Applications, Springer, vol. 11(4), pages 835-862, December.
    10. Julio Saucedo-Zul & Rolando Cavazos-Cadena & Hugo Cruz-Suárez, 2020. "A Discounted Approach in Communicating Average Markov Decision Chains Under Risk-Aversion," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 585-606, November.
    11. Qiuli Liu & Wai-Ki Ching & Xianping Guo, 2023. "Zero-sum stochastic games with the average-value-at-risk criterion," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 618-647, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnab Basu & Mrinal K. Ghosh, 2018. "Nonzero-Sum Risk-Sensitive Stochastic Games on a Countable State Space," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 516-532, May.
    2. V. S. Borkar & S. P. Meyn, 2002. "Risk-Sensitive Optimal Control for Markov Decision Processes with Monotone Cost," Mathematics of Operations Research, INFORMS, vol. 27(1), pages 192-209, February.
    3. Rolando Cavazos-Cadena & Raúl Montes-de-Oca, 2003. "The Value Iteration Algorithm in Risk-Sensitive Average Markov Decision Chains with Finite State Space," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 752-776, November.
    4. Karel Sladký, 2013. "Risk-Sensitive and Mean Variance Optimality in Markov Decision Processes," Czech Economic Review, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, vol. 7(3), pages 146-161, November.
    5. Bäuerle, Nicole & Rieder, Ulrich, 2017. "Zero-sum risk-sensitive stochastic games," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 622-642.
    6. Gustavo Portillo-Ramírez & Rolando Cavazos-Cadena & Hugo Cruz-Suárez, 2023. "Contractive approximations in average Markov decision chains driven by a risk-seeking controller," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 75-91, August.
    7. Rolando Cavazos-Cadena & Daniel Hernández-Hernández, 2011. "Discounted Approximations for Risk-Sensitive Average Criteria in Markov Decision Chains with Finite State Space," Mathematics of Operations Research, INFORMS, vol. 36(1), pages 133-146, February.
    8. Rolando Cavazos-Cadena, 2009. "Solutions of the average cost optimality equation for finite Markov decision chains: risk-sensitive and risk-neutral criteria," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(3), pages 541-566, December.
    9. Rolando Cavazos-Cadena, 2018. "Characterization of the Optimal Risk-Sensitive Average Cost in Denumerable Markov Decision Chains," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 1025-1050, August.
    10. Daniel Hernández Hernández & Diego Hernández Bustos, 2017. "Local Poisson Equations Associated with Discrete-Time Markov Control Processes," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 1-29, April.
    11. Özlem Çavuş & Andrzej Ruszczyński, 2014. "Computational Methods for Risk-Averse Undiscounted Transient Markov Models," Operations Research, INFORMS, vol. 62(2), pages 401-417, April.
    12. Pelin Canbolat, 2014. "Optimal halting policies in Markov population decision chains with constant risk posture," Annals of Operations Research, Springer, vol. 222(1), pages 227-237, November.
    13. Selene Chávez-Rodríguez & Rolando Cavazos-Cadena & Hugo Cruz-Suárez, 2016. "Controlled Semi-Markov Chains with Risk-Sensitive Average Cost Criterion," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 670-686, August.
    14. Ghosh, Mrinal K. & Golui, Subrata & Pal, Chandan & Pradhan, Somnath, 2023. "Discrete-time zero-sum games for Markov chains with risk-sensitive average cost criterion," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 40-74.
    15. Pestien, Victor & Wang, Xiaobo, 1998. "Markov-achievable payoffs for finite-horizon decision models," Stochastic Processes and their Applications, Elsevier, vol. 73(1), pages 101-118, January.
    16. Guglielmo D’Amico & Fulvio Gismondi & Jacques Janssen & Raimondo Manca, 2015. "Discrete Time Homogeneous Markov Processes for the Study of the Basic Risk Processes," Methodology and Computing in Applied Probability, Springer, vol. 17(4), pages 983-998, December.
    17. Julio Saucedo-Zul & Rolando Cavazos-Cadena & Hugo Cruz-Suárez, 2020. "A Discounted Approach in Communicating Average Markov Decision Chains Under Risk-Aversion," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 585-606, November.
    18. Selene Chávez-Rodríguez & Rolando Cavazos-Cadena & Hugo Cruz-Suárez, 2015. "Continuity of the optimal average cost in Markov decision chains with small risk-sensitivity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 81(3), pages 269-298, June.
    19. Takayuki Osogami, 2012. "Iterated risk measures for risk-sensitive Markov decision processes with discounted cost," Papers 1202.3755, arXiv.org.
    20. Rolando Cavazos-Cadena, 2010. "Optimality equations and inequalities in a class of risk-sensitive average cost Markov decision chains," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 47-84, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:124:y:2014:i:1:p:961-983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.