IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v28y2023i6d10.1007_s11027-023-10068-3.html
   My bibliography  Save this article

Quantifying the value to the farmer from adopting climate risk-reducing technologies

Author

Listed:
  • Francisco Rosas

    (Universidad ORT Uruguay, and Centro de Investigaciones Económicas (Cinve))

  • Mariana Sans

    (University of Maryland)

Abstract

Technology adoption and innovation are strategies available to farmers seeking to adapt to climate change and variability, which adopt input- or process-based technologies that improve the climate resilience of their production systems (e.g., technologies reducing yield or profit risk). Typical feasibility analyses, however, do not quantify the economic benefits arising from the higher stability of profits but, instead, restrict the assessments to the impacts of the higher average profits. We present an economic approach based on the expected utility theory to quantify the value to the farmer from adopting a climate risk-reducing technology. Our methodology allows us to decompose this value into two components: one due to the average profit increase and the other from the reduction in the profit’s volatility. To showcase our approach, we use two technologies employed as adaptation strategies in crop and livestock production systems in Uruguay. We find that more risk-averse farmers assign a relatively high value to the lower profit volatility, amounting to 4–32% of the total additional value gained for adopting these technologies. Our methodology can be used to assess the adoption of other risk-reducing technologies in the agricultural sector and shed light on the beneficial impacts on farmer’s welfare.

Suggested Citation

  • Francisco Rosas & Mariana Sans, 2023. "Quantifying the value to the farmer from adopting climate risk-reducing technologies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 28(6), pages 1-18, August.
  • Handle: RePEc:spr:masfgc:v:28:y:2023:i:6:d:10.1007_s11027-023-10068-3
    DOI: 10.1007/s11027-023-10068-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-023-10068-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-023-10068-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robin Cross & Steven Buccola, 2004. "Adapting Cooperative Structure to the New Global Environment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(5), pages 1254-1261.
    2. Babcock, Bruce A. & Choi, E. Kwan & Feinerman, Eli, 1993. "Risk And Probability Premiums For Cara Utility Functions," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 18(01), pages 1-8, July.
    3. John Quiggin & Robert G. Chambers, 2006. "The state-contingent approach to production under uncertainty ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(2), pages 153-169, June.
    4. Bruce A. Babcock & David A. Hennessy, 1996. "Input Demand under Yield and Revenue Insurance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(2), pages 416-427.
    5. David A. Hennessy & Bruce A. Babcock & Dermot J. Hayes, 1997. "Budgetary and Producer Welfare Effects of Revenue Insurance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(3), pages 1024-1034.
    6. Moschini, Giancarlo & Hennessy, David A., 2001. "Uncertainty, risk aversion, and risk management for agricultural producers," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 1, chapter 2, pages 88-153, Elsevier.
    7. J. Arbuckle & Linda Prokopy & Tonya Haigh & Jon Hobbs & Tricia Knoot & Cody Knutson & Adam Loy & Amber Mase & Jean McGuire & Lois Morton & John Tyndall & Melissa Widhalm, 2013. "Climate change beliefs, concerns, and attitudes toward adaptation and mitigation among farmers in the Midwestern United States," Climatic Change, Springer, vol. 117(4), pages 943-950, April.
    8. Barham, Bradford L. & Chavas, Jean-Paul & Fitz, Dylan & Salas, Vanessa Ríos & Schechter, Laura, 2014. "The roles of risk and ambiguity in technology adoption," Journal of Economic Behavior & Organization, Elsevier, vol. 97(C), pages 204-218.
    9. Nestor Gandelman & Ruben Hernandez-Murillo, 2015. "Risk Aversion at the Country Level," Review, Federal Reserve Bank of St. Louis, vol. 97(1), pages 53-66.
    10. Pandey, Sushil, 1990. "Risk-efficient irrigation strategies for wheat," Agricultural Economics, Blackwell, vol. 4(1), pages 59-71, April.
    11. Phoebe Koundouri & Marita Laukkanen & Sami Myyrä & Céline Nauges, 2009. "The effects of EU agricultural policy changes on farmers' risk attitudes," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 36(1), pages 53-77, March.
    12. Terrance M. Hurley & Paul D. Mitchell & Marlin E. Rice, 2004. "Risk and the Value of Bt Corn," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(2), pages 345-358.
    13. Barry K. Goodwin, 2009. "Payment Limitations and Acreage Decisions under Risk Aversion: A Simulation Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(1), pages 19-41.
    14. Prahlad Lamichhane & Michalis Hadjikakou & Kelly K. Miller & Brett A. Bryan, 2022. "Climate change adaptation in smallholder agriculture: adoption, barriers, determinants, and policy implications," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-24, August.
    15. Chris Starmer, 2000. "Developments in Non-expected Utility Theory: The Hunt for a Descriptive Theory of Choice under Risk," Journal of Economic Literature, American Economic Association, vol. 38(2), pages 332-382, June.
    16. John DiNardo & Justin L. Tobias, 2001. "Nonparametric Density and Regression Estimation," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 11-28, Fall.
    17. Yuan, Tian & Fengmin, Li & Puhai, Liu, 2003. "Economic analysis of rainwater harvesting and irrigation methods, with an example from China," Agricultural Water Management, Elsevier, vol. 60(3), pages 217-226, May.
    18. Jeffrey Apland & Bruce A. McCarl & William L. Miller, 1980. "Risk and the Demand for Supplemental Irrigation: A Case Study in the Corn Belt," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 62(1), pages 142-145.
    19. Becona, Gonzalo & Astigarraga, Laura & Picasso, Valentin D., 2014. "Greenhouse Gas Emissions of Beef Cow-Calf Grazing Systems in Uruguay," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 3(2).
    20. Xue, Xiaole & Wei, Pengyu & Weng, Chengguo, 2019. "Derivatives trading for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 40-53.
    21. Prahlad Lamichhane & Michalis Hadjikakou & Kelly K. Miller & Brett A. Bryan, 2022. "Climate change adaptation in smallholder agriculture: adoption, barriers, determinants, and policy implications," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(5), pages 1-24, June.
    22. Pannell, David J. & Malcolm, Bill & Kingwell, Ross S., 2000. "Are we risking too much? Perspectives on risk in farm modelling," Agricultural Economics, Blackwell, vol. 23(1), pages 69-78, June.
    23. Raimund M. Kovacevic & Georg Ch. Pflug, 2011. "Does Insurance Help to Escape the Poverty Trap?—A Ruin Theoretic Approach," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 78(4), pages 1003-1028, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mitchell, Paul D. & Knight, Thomas O., 2008. "Economic Analysis of Supplemental Deductible Coverage as Recommended in the USDA's 2007 Farm Bill Proposal," Agricultural and Resource Economics Review, Northeastern Agricultural and Resource Economics Association, vol. 37(01), pages 1-15, April.
    2. Francisco Rosas & Mariana Sans & Santiago Arana, 2018. "The effect of irrigation on income volatility reduction: a prospect theory approach," Documentos de Investigación 118, Universidad ORT Uruguay. Facultad de Administración y Ciencias Sociales.
    3. Rosas, Juan Francisco, 2012. "Essays on the environmental effects of agricultural production," ISU General Staff Papers 201201010800003744, Iowa State University, Department of Economics.
    4. Rosas, Juan Francisco & Sans, Mariana & Arana, Santiago, 2017. "Quantifying the Benefits of Supplemented Irrigation due to Less Volatile Yields: A Prospect Theory Approach Applied to Summer Crops in Uruguay," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259122, Agricultural and Applied Economics Association.
    5. Mitchell, Paul David, 1999. "The theory and practice of green insurance: insurance to encourage the adoption of corn rootworm IPM," ISU General Staff Papers 1999010108000013154, Iowa State University, Department of Economics.
    6. Mitchell, Paul D. & Zhu, En (John), 2003. "Moral Hazard And Bt Corn Refuge," 2003 Annual meeting, July 27-30, Montreal, Canada 22113, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    7. Crean, Jason & Parton, Kevin & Mullen, John & Jones, Randall, 2013. "Representing climatic uncertainty in agricultural models – an application of state-contingent theory," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(3).
    8. Souto, Augusto & Carriquiry, Miguel & Rosas, Francisco, 2024. "An integrated assessment model of the impacts of agricultural intensification: Trade-offs between economic benefits and water quality under uncertainty," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 68(02), January.
    9. Francisco Rosas & Bruce Babcock & Dermot Hayes, 2015. "Nitrous oxide emission reductions from cutting excessive nitrogen fertilizer applications," Climatic Change, Springer, vol. 132(2), pages 353-367, September.
    10. Moro, Daniele & Sckokai, Paolo, 2013. "The impact of decoupled payments on farm choices: Conceptual and methodological challenges," Food Policy, Elsevier, vol. 41(C), pages 28-38.
    11. Chad E. Hart & Bruce A. Babcock & Dermot J. Hayes, 2001. "Livestock Revenue Insurance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 21(6), pages 553-580, June.
    12. Seo, Sangtaek & Mitchell, Paul D. & Leatham, David J., 2004. "Effects Of Federal Risk Management Programs On Land Allocation And Input Use," 2004 Annual meeting, August 1-4, Denver, CO 20160, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Gomez-Limon, Jose A. & Arriaza, Manuel & Riesgo, Laura, 2003. "An MCDM analysis of agricultural risk aversion," European Journal of Operational Research, Elsevier, vol. 151(3), pages 569-585, December.
    14. Hurley, Terrance M. & Mitchell, Paul D. & Rice, Marlin E., 2001. "What Is The Value Of Bt Corn?," 2001 Annual meeting, August 5-8, Chicago, IL 20476, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    15. Motamed, Mesbah J., 2021. "Price-Yield Covariance Effects on Producers’ Risk Profile and Risk Response," 2021 Annual Meeting, August 1-3, Austin, Texas 314082, Agricultural and Applied Economics Association.
    16. Souto, Augusto & Carriquiry, Miguel A. & Rosas, Juan Francisco, 2021. "Assessing the Impact of Agricultural Intensification on Water Pollution: An Integrated Model Assessment of the San Salvador Basin in Uruguay," 2021 Annual Meeting, August 1-3, Austin, Texas 314037, Agricultural and Applied Economics Association.
    17. Richards, Timothy J. & Manfredo, Mark R., 2003. "Infrequent Shocks and Rating Revenue Insurance: A Contingent Claims Approach," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(2), pages 1-19, August.
    18. Paulson, Nicholas D. & Babcock, Bruce A., 2010. "Readdressing the Fertilizer Problem," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 35(3), pages 1-17, December.
    19. Marie Lassalas & Sabine Duvaleix & Laure Latruffe, 2024. "The technical and economic effects of biodiversity standards on wheat production," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 51(2), pages 275-308.
    20. Rippo, Ruggiero & Cerroni, Simone, 2021. "Farmers’ Participation in the Income Stabilization Tool: Evidence from the Apple Sector in Italy," 2021 Conference, August 17-31, 2021, Virtual 315191, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:28:y:2023:i:6:d:10.1007_s11027-023-10068-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.