IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-020-20437-0.html
   My bibliography  Save this article

Emergency deployment of direct air capture as a response to the climate crisis

Author

Listed:
  • Ryan Hanna

    (University of California San Diego
    University of California San Diego)

  • Ahmed Abdulla

    (University of California San Diego
    Carleton University)

  • Yangyang Xu

    (Texas A&M University)

  • David G. Victor

    (University of California San Diego
    University of California San Diego
    Scripps Institution of Oceanography, University of California San Diego
    The Brookings Institution)

Abstract

Though highly motivated to slow the climate crisis, governments may struggle to impose costly polices on entrenched interest groups, resulting in a greater need for negative emissions. Here, we model wartime-like crash deployment of direct air capture (DAC) as a policy response to the climate crisis, calculating funding, net CO2 removal, and climate impacts. An emergency DAC program, with investment of 1.2–1.9% of global GDP annually, removes 2.2–2.3 GtCO2 yr–1 in 2050, 13–20 GtCO2 yr–1 in 2075, and 570–840 GtCO2 cumulatively over 2025–2100. Compared to a future in which policy efforts to control emissions follow current trends (SSP2-4.5), DAC substantially hastens the onset of net-zero CO2 emissions (to 2085–2095) and peak warming (to 2090–2095); yet warming still reaches 2.4–2.5 °C in 2100. Such massive CO2 removals hinge on near-term investment to boost the future capacity for upscaling. DAC is most cost-effective when using electricity sources already available today: hydropower and natural gas with renewables; fully renewable systems are more expensive because their low load factors do not allow efficient amortization of capital-intensive DAC plants.

Suggested Citation

  • Ryan Hanna & Ahmed Abdulla & Yangyang Xu & David G. Victor, 2021. "Emergency deployment of direct air capture as a response to the climate crisis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20437-0
    DOI: 10.1038/s41467-020-20437-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-20437-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-20437-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pham, An T. & Craig, Michael T., 2023. "Cost and deployment consequences of advanced planning for negative emissions with direct air capture in the U.S. Eastern Interconnection," Applied Energy, Elsevier, vol. 350(C).
    2. Selene Cobo & Ángel Galán-Martín & Victor Tulus & Mark A. J. Huijbregts & Gonzalo Guillén-Gosálbez, 2022. "Human and planetary health implications of negative emissions technologies," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Philipp Günther & Felix Ekardt, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," Land, MDPI, vol. 11(12), pages 1-29, November.
    4. Adrian Odenweller & Falko Ueckerdt & Gregory F. Nemet & Miha Jensterle & Gunnar Luderer, 2022. "Probabilistic feasibility space of scaling up green hydrogen supply," Nature Energy, Nature, vol. 7(9), pages 854-865, September.
    5. Chen, Siyuan & Liu, Jiangfeng & Zhang, Qi & Teng, Fei & McLellan, Benjamin C., 2022. "A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Sara Yasemi & Yasin Khalili & Ali Sanati & Mohammadreza Bagheri, 2023. "Carbon Capture and Storage: Application in the Oil and Gas Industry," Sustainability, MDPI, vol. 15(19), pages 1-32, October.
    7. Shuohua Liu & Xiao Zhang & Yifan Zhou & Shunbo Yao, 2021. "Spatiotemporal Evolution and Influencing Factors of Carbon Sink Dynamics at County Scale: A Case Study of Shaanxi Province, China," IJERPH, MDPI, vol. 18(24), pages 1-18, December.
    8. Arwa, Erick O. & Schell, Kristen R., 2024. "Batteries or silos: Optimizing storage capacity in direct air capture plants to maximize renewable energy use," Applied Energy, Elsevier, vol. 355(C).
    9. Hanwoong Kim & Haewon McJeon & Dawoon Jung & Hanju Lee & Candelaria Bergero & Jiyong Eom, 2021. "Integrated Assessment Modeling of Korea 2050 Carbon Neutrality Technology Pathways," Papers 2111.01598, arXiv.org.
    10. Benjamin K. Sovacool & Chad M. Baum & Sean Low, 2022. "Determining our climate policy future: expert opinions about negative emissions and solar radiation management pathways," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-50, December.
    11. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    12. Gu, Meng & Guo, Qi & Lu, Shiliang, 2022. "Feasibility analysis of energy-saving potential of the underground ice rink using spectrum splitting sunshade technology," Renewable Energy, Elsevier, vol. 191(C), pages 571-579.
    13. Giorgio Tripodi & Francesco Lamperti & Roberto Mavilia & Andrea Mina & Francesca Chiaromonte & Fabrizio Lillo, 2022. "Quantifying knowledge spillovers from advances in negative emissions technologies," LEM Papers Series 2022/17, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    14. Günther, Philipp & Ekardt, Felix, 2022. "Human Rights and Large-Scale Carbon Dioxide Removal: Potential Limits to BECCS and DACCS Deployment," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 11(12), pages 1-29.
    15. Enric Prats-Salvado & Nathalie Monnerie & Christian Sattler, 2021. "Synergies between Direct Air Capture Technologies and Solar Thermochemical Cycles in the Production of Methanol," Energies, MDPI, vol. 14(16), pages 1-21, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-020-20437-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.