IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v25y2020i6d10.1007_s11027-020-09916-3.html
   My bibliography  Save this article

The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: a synthesis of reviews

Author

Listed:
  • Martin A. Bolinder

    (Swedish University of Agricultural Sciences (SLU))

  • Felicity Crotty

    (Royal Agricultural University)

  • Annemie Elsen

    (Bodemkundige Dienst vanBelgië (BDB))

  • Magdalena Frac

    (Institute of Agrophysics of the Polish Academy of Sciences)

  • Tamás Kismányoky

    (University of Pannonia)

  • Jerzy Lipiec

    (Institute of Agrophysics of the Polish Academy of Sciences)

  • Mia Tits

    (Bodemkundige Dienst vanBelgië (BDB))

  • Zoltán Tóth

    (University of Pannonia)

  • Thomas Kätterer

    (Swedish University of Agricultural Sciences (SLU))

Abstract

International initiatives are emphasizing the capture of atmospheric CO2 in soil organic C (SOC) to reduce the climatic footprint from agroecosystems. One approach to quantify the contribution of management practices towards that goal is through analysis of long-term experiments (LTEs). Our objectives were to analyze knowledge gained in literature reviews on SOC changes in LTEs, to evaluate the results regarding interactions with pedo-climatological factors, and to discuss disparities among reviews in data selection criteria. We summarized mean response ratios (RRs) and stock change rate (SCR) effect size indices from twenty reviews using paired comparisons (N). The highest RRs were found with manure applications (30%, N = 418), followed by aboveground crop residue retention and the use of cover crops (9–10%, N = 995 and 129), while the effect of nitrogen fertilization was lowest (6%, N = 846). SCR for nitrogen fertilization exceeded that for aboveground crop residue retention (233 versus 117 kg C ha−1 year−1, N = 183 and 279) and was highest for manure applications and cover crops (409 and 331 kg C ha−1 year−1, N = 217 and 176). When data allows, we recommend calculating both RR and SCR because it improves the interpretation. Our synthesis shows that results are not always consistent among reviews and that interaction with texture and climate remain inconclusive. Selection criteria for study durations are highly variable, resulting in irregular conclusions for the effect of time on changes in SOC. We also discuss the relationships of SOC changes with yield and cropping systems, as well as conceptual problems when scaling-up results obtained from field studies to regional levels.

Suggested Citation

  • Martin A. Bolinder & Felicity Crotty & Annemie Elsen & Magdalena Frac & Tamás Kismányoky & Jerzy Lipiec & Mia Tits & Zoltán Tóth & Thomas Kätterer, 2020. "The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: a synthesis of reviews," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 929-952, August.
  • Handle: RePEc:spr:masfgc:v:25:y:2020:i:6:d:10.1007_s11027-020-09916-3
    DOI: 10.1007/s11027-020-09916-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-020-09916-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-020-09916-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henryson, Kajsa & Sundberg, Cecilia & Kätterer, Thomas & Hansson, Per-Anders, 2018. "Accounting for long-term soil fertility effects when assessing the climate impact of crop cultivation," Agricultural Systems, Elsevier, vol. 164(C), pages 185-192.
    2. Fei Lu, 2015. "How can straw incorporation management impact on soil carbon storage? A meta-analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(8), pages 1545-1568, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rudi Hessel & Guido Wyseure & Ioanna S. Panagea & Abdallah Alaoui & Mark S. Reed & Hedwig van Delden & Melanie Muro & Jane Mills & Oene Oenema & Francisco Areal & Erik van den Elsen & Simone Verzandvo, 2022. "Soil-Improving Cropping Systems for Sustainable and Profitable Farming in Europe," Land, MDPI, vol. 11(6), pages 1-27, May.
    2. Barrios Latorre, Sergio Alejandro & Aronsson, Helena & Björnsson, Lovisa & Viketoft, Maria & Prade, Thomas, 2024. "Exploring the benefits of intermediate crops: Is it possible to offset soil organic carbon losses caused by crop residue removal?," Agricultural Systems, Elsevier, vol. 215(C).
    3. Taghikhah, Firouzeh & Borevitz, Justin & Costanza, Robert & Voinov, Alexey, 2022. "DAESim: A dynamic agro-ecosystem simulation model for natural capital assessment," Ecological Modelling, Elsevier, vol. 468(C).
    4. Salwinder Singh Dhaliwal & Vivek Sharma & Arvind Kumar Shukla & Rajeev Kumar Gupta & Vibha Verma & Manmeet Kaur & Sanjib Kumar Behera & Prabhjot Singh, 2023. "Residual Effect of Organic and Inorganic Fertilizers on Growth, Yield and Nutrient Uptake in Wheat under a Basmati Rice–Wheat Cropping System in North-Western India," Agriculture, MDPI, vol. 13(3), pages 1-17, February.
    5. Damien Beillouin & Marc Corbeels & Julien Demenois & David Berre & Annie Boyer & Abigail Fallot & Frédéric Feder & Rémi Cardinael, 2023. "A global meta-analysis of soil organic carbon in the Anthropocene," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Jerzy Lipiec & Bogusław Usowicz, 2021. "Quantifying Cereal Productivity on Sandy Soil in Response to Some Soil-Improving Cropping Systems," Land, MDPI, vol. 10(11), pages 1-16, November.
    7. Gábor Csitári & Zoltán Tóth & Mónika Kökény, 2021. "Effects of Organic Amendments on Soil Aggregate Stability and Microbial Biomass in a Long-Term Fertilization Experiment (IOSDV)," Sustainability, MDPI, vol. 13(17), pages 1-14, August.
    8. George Bilas & Nikolaos Karapetsas & Anne Gobin & Konstantinos Mesdanitis & Gergely Toth & Tamás Hermann & Yaosheng Wang & Liangguo Luo & Thomas M. Koutsos & Dimitrios Moshou & Thomas K. Alexandridis, 2022. "Land Suitability Analysis as a Tool for Evaluating Soil-Improving Cropping Systems," Land, MDPI, vol. 11(12), pages 1-20, December.
    9. Jantiene E. M. Baartman & Joao Pedro Nunes & Hedwig van Delden & Roel Vanhout & Luuk Fleskens, 2022. "The Effects of Soil Improving Cropping Systems (SICS) on Soil Erosion and Soil Organic Carbon Stocks across Europe: A Simulation Study," Land, MDPI, vol. 11(6), pages 1-28, June.
    10. Amit P. Timilsina & Garrett Steinbeck & Ajay Shah & Sami Khanal, 2024. "Assessing the Multifaceted Tradeoffs of Agricultural Conservation Practices on Ecosystem Services in the Midwest U.S," Sustainability, MDPI, vol. 16(13), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Fan & Henriksen, Christian Bugge & Porter, John, 2016. "Valuation of ecosystem services in organic cereal crop production systems with different management practices in relation to organic matter input," Ecosystem Services, Elsevier, vol. 22(PA), pages 117-127.
    2. Chen, Peng & Xu, Junzeng & Zhang, Zhongxue & Nie, Tangzhe & Wang, Kechun & Guo, Hang, 2022. "Where the straw-derived nitrogen gone in paddy field subjected to different irrigation regimes and straw placement depths? Evidence from 15N labeling," Agricultural Water Management, Elsevier, vol. 273(C).
    3. Gao, Li & Zhang, Wendong & Mei, Yingdan & Sam, Abdoul G. & Song, Yu & Jin, Shuqin, 2018. "Do farmers adopt fewer conservation practices on rented land? Evidence from straw retention in China," Land Use Policy, Elsevier, vol. 79(C), pages 609-621.
    4. Raphael Butler Jumbo & Frédéric Coulon & Tamazon Cowley & Ikeabiama Azuazu & Emmanuel Atai & Imma Bortone & Ying Jiang, 2022. "Evaluating Different Soil Amendments as Bioremediation Strategy for Wetland Soil Contaminated by Crude Oil," Sustainability, MDPI, vol. 14(24), pages 1-22, December.
    5. Jia He & Wenfeng Zhou & Shili Guo & Xin Deng & Jiahao Song & Dingde Xu, 2024. "Environmental policy and farmers' active straw return: administrative guidance or economic reward and punishment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(7), pages 17407-17430, July.
    6. Yu’e Li & Shengwei Shi & Muhammad Ahmed Waqas & Xiaoxia Zhou & Jianling Li & Yunfan Wan & Xiaobo Qin & Qingzhu Gao & Shuo Liu & Andreas Wilkes, 2018. "Long-term (≥20 years) application of fertilizers and straw return enhances soil carbon storage: a meta-analysis," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(4), pages 603-619, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:25:y:2020:i:6:d:10.1007_s11027-020-09916-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.