IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v164y2018icp185-192.html
   My bibliography  Save this article

Accounting for long-term soil fertility effects when assessing the climate impact of crop cultivation

Author

Listed:
  • Henryson, Kajsa
  • Sundberg, Cecilia
  • Kätterer, Thomas
  • Hansson, Per-Anders

Abstract

Soil organic carbon (SOC) dynamics influence the climate impact of crop cultivation, both through affecting net carbon exchange between the soil and the atmosphere and through affecting soil fertility. Higher soil fertility can enhance yield, and consequently make more plant residues available for carbon sequestration in the soil. This feedback mechanism between SOC and yield is commonly not included when assessing the environmental impact of crop production using system analysis tools like life cycle assessment (LCA). Therefore, this study developed a modelling framework where the SOC-yield feedback mechanism is included in climate impact assessment of crop cultivation, and which could be applied in LCAs. The framework was constructed by combining a model for SOC dynamics, yield response to SOC changes in a Swedish long-term field experiment and climate impact assessment. The framework employs a dynamic approach, with a time-distributed emissions inventory and a time-dependent climate impact assessment model, complemented by the most common climate metric, global warming potential (GWP). A case study applying the framework to barley cultivation was performed to explore the quantitative effect of including the feedback mechanism on the calculated climate impact. The case study involved simulating a fertiliser-induced 10% yield increase during one year and assessing the climate impact over 60 years. In this specific case, the effect of solely including SOC dynamics without the yield response to SOC decreased climate impact per kg barley by about three-fold more than only accounting for the 10% temporary yield increase. When the feedback mechanism was included, the estimated climate impact decreased five-fold more than when SOC changes were not included. These results show that SOC changes can affect the climate impact of cultivation, not only through affecting net CO2 exchanges between soil and atmosphere, as previously acknowledged by other studies, but also through changing the system performance. The quantitative results obtained in this study show that this could be an important aspect to include in order to avoid introducing systematic error when assessing the long-term climate impact of crop management changes that affect yield or SOC dynamics.

Suggested Citation

  • Henryson, Kajsa & Sundberg, Cecilia & Kätterer, Thomas & Hansson, Per-Anders, 2018. "Accounting for long-term soil fertility effects when assessing the climate impact of crop cultivation," Agricultural Systems, Elsevier, vol. 164(C), pages 185-192.
  • Handle: RePEc:eee:agisys:v:164:y:2018:i:c:p:185-192
    DOI: 10.1016/j.agsy.2018.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17306510
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2018.03.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karlsson, Hanna & Ahlgren, Serina & Strid, Ingrid & Hansson, Per-Anders, 2015. "Faba beans for biorefinery feedstock or feed? Greenhouse gas and energy balances of different applications," Agricultural Systems, Elsevier, vol. 141(C), pages 138-148.
    2. Harald Dyckhoff & Tarek Kasah, 2014. "Time Horizon and Dominance in Dynamic Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 799-808, December.
    3. Wang, Yuhui & Zhou, Guangsheng & Jia, Bingrui, 2008. "Modeling SOC and NPP responses of meadow steppe to different grazing intensities in Northeast China," Ecological Modelling, Elsevier, vol. 217(1), pages 72-78.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin A. Bolinder & Felicity Crotty & Annemie Elsen & Magdalena Frac & Tamás Kismányoky & Jerzy Lipiec & Mia Tits & Zoltán Tóth & Thomas Kätterer, 2020. "The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: a synthesis of reviews," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(6), pages 929-952, August.
    2. Raphael Butler Jumbo & Frédéric Coulon & Tamazon Cowley & Ikeabiama Azuazu & Emmanuel Atai & Imma Bortone & Ying Jiang, 2022. "Evaluating Different Soil Amendments as Bioremediation Strategy for Wetland Soil Contaminated by Crude Oil," Sustainability, MDPI, vol. 14(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaolin Yang & Jinran Xiong & Taisheng Du & Xiaotang Ju & Yantai Gan & Sien Li & Longlong Xia & Yanjun Shen & Steven Pacenka & Tammo S. Steenhuis & Kadambot H. M. Siddique & Shaozhong Kang & Klaus But, 2024. "Diversifying crop rotation increases food production, reduces net greenhouse gas emissions and improves soil health," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Nicole Bamber & Ian Turner & Baishali Dutta & Mohammed Davoud Heidari & Nathan Pelletier, 2023. "Consequential Life Cycle Assessment of Grain and Oilseed Crops: Review and Recommendations," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    3. Charles Breton & Pierre Blanchet & Ben Amor & Robert Beauregard & Wen-Shao Chang, 2018. "Assessing the Climate Change Impacts of Biogenic Carbon in Buildings: A Critical Review of Two Main Dynamic Approaches," Sustainability, MDPI, vol. 10(6), pages 1-30, June.
    4. Chen, Yizhao & Fei, Xinran & Groisman, Pavel & Sun, Zhengguo & Zhang, Jianan & Qin, Zhihao, 2019. "Contrasting policy shifts influence the pattern of vegetation production and C sequestration over pasture systems: A regional-scale comparison in Temperate Eurasian Steppe," Agricultural Systems, Elsevier, vol. 176(C).
    5. Jiaying Zhai & Yahui Song & Wulan Entemake & Hongwei Xu & Yang Wu & Qing Qu & Sha Xue, 2020. "Change in Soil Particle Size Distribution and Erodibility with Latitude and Vegetation Restoration Chronosequence on the Loess Plateau, China," IJERPH, MDPI, vol. 17(3), pages 1-15, January.
    6. Ahmed Ibrahim Ahmed & Lulu Hou & Ruirui Yan & Xiaoping Xin & Yousif Mohamed Zainelabdeen, 2020. "The Joint Effect of Grazing Intensity and Soil Factors on Aboveground Net Primary Production in Hulunber Grasslands Meadow Steppe," Agriculture, MDPI, vol. 10(7), pages 1-19, July.
    7. Nilton Atalaya Marin & Elgar Barboza & Rolando Salas López & Héctor V. Vásquez & Darwin Gómez Fernández & Renzo E. Terrones Murga & Nilton B. Rojas Briceño & Manuel Oliva-Cruz & Oscar Andrés Gamarra T, 2022. "Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru)," Land, MDPI, vol. 11(5), pages 1-18, May.
    8. Alexandre Charpentier Poncelet & Christoph Helbig & Philippe Loubet & Antoine Beylot & Stéphanie Muller & Jacques Villeneuve & Bertrand Laratte & Andrea Thorenz & Axel Tuma & Guido Sonnemann, 2021. "Life cycle impact assessment methods for estimating the impacts of dissipative flows of metals," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1177-1193, October.
    9. Quyen Le Luu & Sonia Longo & Maurizio Cellura & Eleonora Riva Sanseverino & Maria Anna Cusenza & Vincenzo Franzitta, 2020. "A Conceptual Review on Using Consequential Life Cycle Assessment Methodology for the Energy Sector," Energies, MDPI, vol. 13(12), pages 1-19, June.
    10. Lan Yao & Xiaobo Yan & Miaomiao Xu & Mengya Wu & Zhenning Yu & Min Li, 2021. "Study on Herders’ Willingness to Protect Grassland Based on the IAD Extended Decision Model," Land, MDPI, vol. 10(4), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:164:y:2018:i:c:p:185-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.