IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v24y2019i6d10.1007_s11027-018-9795-y.html
   My bibliography  Save this article

A spatial assessment of the forest carbon budget for Ukraine

Author

Listed:
  • Myroslava Lesiv

    (International Institute for Applied Systems Analysis)

  • Anatoly Shvidenko

    (International Institute for Applied Systems Analysis)

  • Dmitry Schepaschenko

    (International Institute for Applied Systems Analysis
    Bauman Moscow State Technical University)

  • Linda See

    (International Institute for Applied Systems Analysis)

  • Steffen Fritz

    (International Institute for Applied Systems Analysis)

Abstract

The spatial representation of forest cover and forest parameters is a prerequisite for undertaking a systems approach to the full and verified carbon accounting of forest ecosystems over large areas. This study focuses on Ukraine, which contains a diversity of bioclimatic conditions and natural landscapes found across Europe. Ukraine has a high potential to sequester carbon dioxide through afforestation and proper forest management. This paper presents a new 2010 forest map for Ukraine at a 60 m resolution with an accuracy of 91.6 ± 0.8% (CI 0.95), which is then applied to the calculation of the carbon budget. The forest cover map and spatially distributed forest parameters were developed through the integration of remote sensing data, forest statistics, and data collected using the Geo-Wiki application, which involves visual interpretation of very high-resolution satellite imagery. The use of this map in combination with the mapping of other forest parameters had led to a decrease in the uncertainty of the forest carbon budget for Ukraine. The application of both stock-based and flux-based methods shows that Ukrainian forests have served as a net carbon sink, absorbing 11.4 ± 1.7 Tg C year−1 in 2010, which is around 25% less than the official values reported to the United Nations Framework Convention on Climate Change.

Suggested Citation

  • Myroslava Lesiv & Anatoly Shvidenko & Dmitry Schepaschenko & Linda See & Steffen Fritz, 2019. "A spatial assessment of the forest carbon budget for Ukraine," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 985-1006, August.
  • Handle: RePEc:spr:masfgc:v:24:y:2019:i:6:d:10.1007_s11027-018-9795-y
    DOI: 10.1007/s11027-018-9795-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-018-9795-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-018-9795-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shvidenko, Anatoly & Schepaschenko, Dmitry & Nilsson, Sten & Bouloui, Yuri, 2007. "Semi-empirical models for assessing biological productivity of Northern Eurasian forests," Ecological Modelling, Elsevier, vol. 204(1), pages 163-179.
    2. Anatoly Shvidenko & Igor Buksha & Svitlana Krakovska & Petro Lakyda, 2017. "Vulnerability of Ukrainian Forests to Climate Change," Sustainability, MDPI, vol. 9(7), pages 1-35, June.
    3. Chen Jun & Yifang Ban & Songnian Li, 2014. "Open access to Earth land-cover map," Nature, Nature, vol. 514(7523), pages 434-434, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuxin Tang & Ran Wang & Hui Ci & Jinyuan Wei & Hui Yang & Jiakun Teng & Zhaojin Yan, 2024. "Analysis of the Spatiotemporal Evolution of Carbon Budget and Carbon Compensation Zoning in the Core Area of the Yangtze River Delta Urban Agglomeration," Land, MDPI, vol. 13(6), pages 1-23, May.
    2. Teng, Xiangyu & Liu, Fan-peng & Chiu, Yung-ho, 2021. "The change in energy and carbon emissions efficiency after afforestation in China by applying a modified dynamic SBM model," Energy, Elsevier, vol. 216(C).
    3. Manuela Hirschmugl & Carina Sobe & Cosette Khawaja & Rainer Janssen & Lorenzo Traverso, 2021. "Pan-European Mapping of Underutilized Land for Bioenergy Production," Land, MDPI, vol. 10(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingyi Wang & Chen Weng & Zhen Wang & Chunming Li & Tingting Wang, 2022. "What Constitutes the High-Quality Soundscape in Human Habitats? Utilizing a Random Forest Model to Explore Soundscape and Its Geospatial Factors Behind," IJERPH, MDPI, vol. 19(21), pages 1-23, October.
    2. Qing Yang & Zhanqiang Chang & Chou Xie & Chaoyong Shen & Bangsen Tian & Haoran Fang & Yihong Guo & Yu Zhu & Daoqin Zhou & Xin Yao & Guanwen Chen & Tao Xie, 2023. "Combining Soil Moisture and MT-InSAR Data to Evaluate Regional Landslide Susceptibility in Weining, China," Land, MDPI, vol. 12(7), pages 1-34, July.
    3. Gang Lin & Dong Jiang & Xiang Li & Jingying Fu, 2022. "Accounting for Carbon Sink and Its Dominant Influencing Factors in Chinese Ecological Space," Land, MDPI, vol. 11(10), pages 1-19, October.
    4. Viktoriia Lovynska & Yuriy Buchavyi & Petro Lakyda & Svitlana Sytnyk & Yuriy Gritzan & Roman Sendziuk, 2020. "Assessment of pine aboveground biomass within Northern Steppe of Ukraine using Sentinel-2 data," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(8), pages 339-348.
    5. Hao Wang & Yunfeng Hu, 2021. "Simulation of Biocapacity and Spatial-Temporal Evolution Analysis of Loess Plateau in Northern Shaanxi Based on the CA–Markov Model," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    6. Mu Li & Lingli Zhang & Yuanyuan Chen & Shuangliang Liu & Mingyao Cai & Qiangqiang Sun, 2024. "Construction of Landscape Ecological Risk Collaborative Management Network in Mountainous Cities—A Case Study of Zhangjiakou," Land, MDPI, vol. 13(10), pages 1-28, September.
    7. Yunchen Wang & Boyan Li, 2022. "The Spatial Disparities of Land-Use Efficiency in Mainland China from 2000 to 2015," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    8. Wei Guo & Yongjia Teng & Yueguan Yan & Chuanwu Zhao & Wanqiu Zhang & Xianglin Ji, 2022. "Simulation of Land Use and Carbon Storage Evolution in Multi-Scenario: A Case Study in Beijing-Tianjin-Hebei Urban Agglomeration, China," Sustainability, MDPI, vol. 14(20), pages 1-19, October.
    9. Ziqian Kang & Shuo Wang & Ling Xu & Fenglin Yang & Shushen Zhang, 2021. "Suitability assessment of urban land use in Dalian, China using PNN and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 913-936, March.
    10. Dongchuan Wang & Hua Chai & Zhiheng Wang & Kangjian Wang & Hongyi Wang & Hui Long & Jianshe Gao & Aoze Wei & Sirun Wang, 2022. "Dynamic Monitoring and Ecological Risk Analysis of Lake Inundation Areas in Tibetan Plateau," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    11. Dongjie Wang & Hao Yang & Yueming Hu & A-Xing Zhu & Xiaoyun Mao, 2022. "Analyzing Spatio-Temporal Characteristics of Cultivated Land Fragmentation and Their Influencing Factors in a Rapidly Developing Region: A Case Study in Guangdong Province, China," Land, MDPI, vol. 11(10), pages 1-21, October.
    12. Xuemao Zhang & Binggeng Xie & Junhan Li & Chuan Yuan, 2023. "Spatiotemporal Distribution and Driving Force Analysis of the Ecosystem Service Value in the Fujiang River Basin, China," Land, MDPI, vol. 12(2), pages 1-16, February.
    13. Qiangqiang Yang & Pian Zhang & Xiaocong Qiu & Guanglai Xu & Jianyu Chi, 2023. "Spatial-Temporal Variations and Trade-Offs of Ecosystem Services in Anhui Province, China," IJERPH, MDPI, vol. 20(1), pages 1-18, January.
    14. Guannan Dong & Zhengjia Liu & Guoming Du & Jinwei Dong & Kai Liu, 2022. "Assessment of vegetation damage by three typhoons (Bavi, Maysak, and Haishen) in Northeast China in 2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2883-2899, December.
    15. Yangyang Wu & Lei Gu & Siliang Li & Chunzi Guo & Xiaodong Yang & Yue Xu & Fujun Yue & Haijun Peng & Yinchuan Chen & Jinli Yang & Zhenghua Shi & Guangjie Luo, 2022. "Responses of NDVI to Climate Change and LUCC along Large-Scale Transportation Projects in Fragile Karst Areas, SW China," Land, MDPI, vol. 11(10), pages 1-16, October.
    16. Qiu, Bingwen & Jian, Zeyu & Yang, Peng & Tang, Zhenghong & Zhu, Xiaolin & Duan, Mingjie & Yu, Qiangyi & Chen, Xuehong & Zhang, Miao & Tu, Ping & Xu, Weiming & Zhao, Zhiyuan, 2024. "Unveiling grain production patterns in China (2005–2020) towards targeted sustainable intensification," Agricultural Systems, Elsevier, vol. 216(C).
    17. Jingyi Sun & Haidong Li & Ruya Xiao & Guohui Yao & Fengli Zou, 2024. "Dynamics of Heat Island Intensity in a Rapidly Urbanizing Area and the Cooling Effect of Ecological Land: A Case Study in Suzhou, Yangtze River Delta," Sustainability, MDPI, vol. 16(11), pages 1-21, May.
    18. Diogo Duarte & Cidália Fonte & Hugo Costa & Mário Caetano, 2023. "Thematic Comparison between ESA WorldCover 2020 Land Cover Product and a National Land Use Land Cover Map," Land, MDPI, vol. 12(2), pages 1-16, February.
    19. Maksym Matsala & Andrii Bilous & Roman Feshchenko & Raisa Matiashuk & Svitlana Bilous & Yaroslav Kovbasa, 2021. "Spatial and compositional structure of European oak urban forests in Kyiv city, Ukraine," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 67(3), pages 143-153.
    20. Bisrat Haile Gebrekidan & Thomas Heckelei & Sebastian Rasch, 2020. "Characterizing Farmers and Farming System in Kilombero Valley Floodplain, Tanzania," Sustainability, MDPI, vol. 12(17), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:24:y:2019:i:6:d:10.1007_s11027-018-9795-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.