IDEAS home Printed from https://ideas.repec.org/a/caa/jnljfs/v66y2020i8id28-2020-jfs.html
   My bibliography  Save this article

Assessment of pine aboveground biomass within Northern Steppe of Ukraine using Sentinel-2 data

Author

Listed:
  • Viktoriia Lovynska

    (Department of Parks and Gardens, Faculty of Agronomy, Dnipro State Agrarian and Economic University, Dnipro, Ukraine)

  • Yuriy Buchavyi

    (Department of Ecology and Technologies of Environmental Protection, National Technical University "Dnipro Polytechnic", Dnipro, Ukraine)

  • Petro Lakyda

    (Education and Research Institute of Forestry and Landscape Park Management, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine)

  • Svitlana Sytnyk

    (Department of Forest Measurement and Forest Management, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine)

  • Yuriy Gritzan

    (Department of Parks and Gardens, Faculty of Agronomy, Dnipro State Agrarian and Economic University, Dnipro, Ukraine)

  • Roman Sendziuk

    (Department of Forest Measurement and Forest Management, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine)

Abstract

The present study offers the results of the spectral characteristics, calculated vegetative indices and biophysical parameters of pine stands of the Northern Steppe of Ukraine region obtained using Sentinel-2 data. For the development of regression models with the prediction of the biomass of pine forests using the obtained spectral characteristics, we used the results of the assessment of the aboveground biomass by the method of field surveys. The results revealed the highest correlation relations between the parameters of the general and trunk biomass with the normalised difference vegetation index (NDVI) and transformed vegetation index (TVI) vegetative indices and the fraction of absorbed photosynthetic active radiation (FARAP) and fraction of vegetation cover (FCOVER) biophysical parameters. To generate the models of determining the forest aboveground biomass (AGB), we used both the single- and two-factor models, the most optimum of which were those containing the NDVI predictor separately and in combination with the FCOVER predictor. The predicted values of the total AGB for the mentioned models equalled 32.5 to 236.3 and 39.9 to 253.4 t.ha-1. We performed mapping of the AGB of pine stands of the Northern Steppe using multi-spectral Sentinel-2 images, particularly the spectral characteristics of their derivatives (vegetative indices, biophysical parameters). This study demonstrated promising results for conducting an AGB-mapping of pine woods in the studied region using free-access resources.

Suggested Citation

  • Viktoriia Lovynska & Yuriy Buchavyi & Petro Lakyda & Svitlana Sytnyk & Yuriy Gritzan & Roman Sendziuk, 2020. "Assessment of pine aboveground biomass within Northern Steppe of Ukraine using Sentinel-2 data," Journal of Forest Science, Czech Academy of Agricultural Sciences, vol. 66(8), pages 339-348.
  • Handle: RePEc:caa:jnljfs:v:66:y:2020:i:8:id:28-2020-jfs
    DOI: 10.17221/28/2020-JFS
    as

    Download full text from publisher

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/28/2020-JFS.html
    Download Restriction: free of charge

    File URL: http://jfs.agriculturejournals.cz/doi/10.17221/28/2020-JFS.pdf
    Download Restriction: free of charge

    File URL: https://libkey.io/10.17221/28/2020-JFS?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shvidenko, Anatoly & Schepaschenko, Dmitry & Nilsson, Sten & Bouloui, Yuri, 2007. "Semi-empirical models for assessing biological productivity of Northern Eurasian forests," Ecological Modelling, Elsevier, vol. 204(1), pages 163-179.
    2. Yi Y. Liu & Albert I. J. M. van Dijk & Richard A. M. de Jeu & Josep G. Canadell & Matthew F. McCabe & Jason P. Evans & Guojie Wang, 2015. "Recent reversal in loss of global terrestrial biomass," Nature Climate Change, Nature, vol. 5(5), pages 470-474, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liangsheng Zhang & Haijiang Luo & Xuezhen Zhang, 2022. "Land-Greening Hotspot Changes in the Yangtze River Economic Belt during the Last Four Decades and Their Connections to Human Activities," Land, MDPI, vol. 11(5), pages 1-17, April.
    2. Patricia Arrogante-Funes & Carlos J. Novillo & Raúl Romero-Calcerrada, 2018. "Monitoring NDVI Inter-Annual Behavior in Mountain Areas of Mainland Spain (2001–2016)," Sustainability, MDPI, vol. 10(12), pages 1-24, November.
    3. Sven Teske & Thomas Pregger & Sonja Simon & Tobias Naegler & Johannes Pagenkopf & Özcan Deniz & Bent van den Adel & Kate Dooley & Malte Meinshausen, 2021. "It Is Still Possible to Achieve the Paris Climate Agreement: Regional, Sectoral, and Land-Use Pathways," Energies, MDPI, vol. 14(8), pages 1-25, April.
    4. Pan, Quan & Wen, Zhi & Wu, Tong & Zheng, Tianchen & Yang, Yanzheng & Li, Ruonan & Zheng, Hua, 2022. "Trade-offs and synergies of forest ecosystem services from the perspective of plant functional traits: A systematic review," Ecosystem Services, Elsevier, vol. 58(C).
    5. Kaiqiang Bao & Haifeng Tian & Min Su & Liping Qiu & Xiaorong Wei & Yanjiang Zhang & Jian Liu & Hailong Gao & Jimin Cheng, 2019. "Stability of Ecosystem CO 2 Flux in Response to Changes in Precipitation in a Semiarid Grassland," Sustainability, MDPI, vol. 11(9), pages 1-18, May.
    6. Ermias Aynekulu & Marta Suber & Meine van Noordwijk & Jacobo Arango & James M. Roshetko & Todd S. Rosenstock, 2020. "Carbon Storage Potential of Silvopastoral Systems of Colombia," Land, MDPI, vol. 9(9), pages 1-12, September.
    7. Lee, Dong Joo & Choi, Moon Bo, 2020. "Ecological value of global terrestrial plants," Ecological Modelling, Elsevier, vol. 438(C).
    8. Inderjot Chahal & Laura L. Van Eerd, 2023. "Do Cover Crops Increase Subsequent Crop Yield in Temperate Climates? A Meta-Analysis," Sustainability, MDPI, vol. 15(8), pages 1-26, April.
    9. Yue Li & Paulo M. Brando & Douglas C. Morton & David M. Lawrence & Hui Yang & James T. Randerson, 2022. "Deforestation-induced climate change reduces carbon storage in remaining tropical forests," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    10. Razafindratsima, Onja H. & Kamoto, Judith F.M. & Sills, Erin O. & Mutta, Doris N. & Song, Conghe & Kabwe, Gillian & Castle, Sarah E. & Kristjanson, Patricia M. & Ryan, Casey M. & Brockhaus, Maria & Su, 2021. "Reviewing the evidence on the roles of forests and tree-based systems in poverty dynamics," Forest Policy and Economics, Elsevier, vol. 131(C).
    11. Huanyuan Zhang-Zheng & Xiongjie Deng & Jesús Aguirre-Gutiérrez & Benjamin D. Stocker & Eleanor Thomson & Ruijie Ding & Stephen Adu-Bredu & Akwasi Duah-Gyamfi & Agne Gvozdevaite & Sam Moore & Imma Oliv, 2024. "Why models underestimate West African tropical forest primary productivity," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Long Li & Wei Fu & Mingcan Luo, 2022. "Spatial and Temporal Variation and Prediction of Ecosystem Carbon Stocks in Yunnan Province Based on Land Use Change," IJERPH, MDPI, vol. 19(23), pages 1-14, November.
    13. Songbai Hong & Jinzhi Ding & Fei Kan & Hao Xu & Shaoyuan Chen & Yitong Yao & Shilong Piao, 2023. "Asymmetry of carbon sequestrations by plant and soil after forestation regulated by soil nitrogen," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Krishna, Dyvavani K. & Watham, Taibanganba & Padalia, Hitendra & Srinet, Ritika & Nandy, Subrata, 2023. "Improved gross primary productivity estimation using semi empirical (PRELES) model for moist Indian sal forest," Ecological Modelling, Elsevier, vol. 475(C).
    15. Myroslava Lesiv & Anatoly Shvidenko & Dmitry Schepaschenko & Linda See & Steffen Fritz, 2019. "A spatial assessment of the forest carbon budget for Ukraine," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(6), pages 985-1006, August.
    16. Yuanwei Qin & Xiangming Xiao & Jean-Pierre Wigneron & Philippe Ciais & Martin Brandt & Lei Fan & Xiaojun Li & Sean Crowell & Xiaocui Wu & Russell Doughty & Yao Zhang & Fang Liu & Stephen Sitch & Berri, 2021. "Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon," Nature Climate Change, Nature, vol. 11(5), pages 442-448, May.
    17. Yuzhe Li & Jiangwen Fan & Zhongmin Hu, 2018. "Comparison of Carbon-Use Efficiency Among Different Land-Use Patterns of the Temperate Steppe in the Northern China Pastoral Farming Ecotone," Sustainability, MDPI, vol. 10(2), pages 1-17, February.
    18. Ruiz-Benito, Paloma & Vacchiano, Giorgio & Lines, Emily R. & Reyer, Christopher P.O. & Ratcliffe, Sophia & Morin, Xavier & Hartig, Florian & Mäkelä, Annikki & Yousefpour, Rasoul & Chaves, Jimena E. & , 2020. "Available and missing data to model impact of climate change on European forests," Ecological Modelling, Elsevier, vol. 416(C).
    19. Yushuo Zhang & Lin Zhao & Jiyu Liu & Yuli Liu & Cansong Li, 2015. "The Impact of Land Cover Change on Ecosystem Service Values in Urban Agglomerations along the Coast of the Bohai Rim, China," Sustainability, MDPI, vol. 7(8), pages 1-23, August.
    20. Marcos-Martinez, Raymundo & Bryan, Brett A. & Schwabe, Kurt A. & Connor, Jeffery D. & Law, Elizabeth A., 2018. "Forest transition in developed agricultural regions needs efficient regulatory policy," Forest Policy and Economics, Elsevier, vol. 86(C), pages 67-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:caa:jnljfs:v:66:y:2020:i:8:id:28-2020-jfs. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivo Andrle (email available below). General contact details of provider: https://www.cazv.cz/en/home/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.