IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v24y2019i2d10.1007_s11027-018-9804-1.html
   My bibliography  Save this article

Economic and environmental performance of dryland wheat-based farming systems in a 1.5 °C world

Author

Listed:
  • John M. Antle

    (Oregon State University)

  • Seojin Cho

    (Oregon State University)

  • S. M. Hossein Tabatabaie

    (Oregon State University)

  • Roberto O. Valdivia

    (Oregon State University)

Abstract

In 2015, the United Nations challenged the scientific community to evaluate development pathways consistent with the goal of limiting global average temperature increase to 1.5 °C. This study reports analysis that was carried out as part of a project responding to that challenge. Using recently developed methods for regional integrated assessment of agricultural systems, this study evaluates the economic and environmental performance of dryland farming systems in the United States of America (U.S). Pacific Northwest, a major wheat (Triticum aestivum) production region, under greenhouse gas mitigation and policy scenarios consistent with the 1.5 °C goal. A novel feature of this study is to combine bio-physical and economic models with site-specific life cycle analysis to evaluate both the economic performance of current and possible alternative farming systems. The analysis shows that these farming systems could be adapted through changes in management to reduce soil emissions of greenhouse gases and incorporation of new biofuel crops, and could be affected by changes in prices and costs of production associated with greenhouse gas mitigation policies. These changes could result in a win-win outcome for those farms in the Pacific Northwest region where site-specific conditions are suited to these adaptations, providing both higher farm incomes and contributing to greenhouse gas emissions reductions. A key implication for mitigation and adaptation strategies is the need to coordinate climate policy design and development of technologies needed to achieve policy goals.

Suggested Citation

  • John M. Antle & Seojin Cho & S. M. Hossein Tabatabaie & Roberto O. Valdivia, 2019. "Economic and environmental performance of dryland wheat-based farming systems in a 1.5 °C world," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(2), pages 165-180, February.
  • Handle: RePEc:spr:masfgc:v:24:y:2019:i:2:d:10.1007_s11027-018-9804-1
    DOI: 10.1007/s11027-018-9804-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-018-9804-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-018-9804-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miller, Patrick & Kumar, Amit, 2013. "Development of emission parameters and net energy ratio for renewable diesel from Canola and Camelina," Energy, Elsevier, vol. 58(C), pages 426-437.
    2. Molden, David & Frenken, K. & Barker, R. & de Fraiture, Charlotte & Mati, Bancy & Svendsen, M. & Sadoff, Claudia W. & Finlayson, Max & Atapattu, Sithara & Giordano, Mark & Inocencio, Arlene & Lannerst, 2007. "Trends in water and agricultural development," IWMI Books, Reports H040195, International Water Management Institute.
    3. John M. Antle, 2011. "Parsimonious Multi-dimensional Impact Assessment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(5), pages 1292-1311.
    4. World Bank, 2012. "Carbon Sequestration in Agricultural Soils," World Bank Publications - Reports 11868, The World Bank Group.
    5. Krohn, Brian J. & Fripp, Matthias, 2012. "A life cycle assessment of biodiesel derived from the “niche filling” energy crop camelina in the USA," Applied Energy, Elsevier, vol. 92(C), pages 92-98.
    6. Wang, Michael & Huo, Hong & Arora, Salil, 2011. "Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context," Energy Policy, Elsevier, vol. 39(10), pages 5726-5736, October.
    7. Prechsl, Ulrich E. & Wittwer, Raphael & van der Heijden, Marcel G.A. & Lüscher, Gisela & Jeanneret, Philippe & Nemecek, Thomas, 2017. "Assessing the environmental impacts of cropping systems and cover crops: Life cycle assessment of FAST, a long-term arable farming field experiment," Agricultural Systems, Elsevier, vol. 157(C), pages 39-50.
    8. Antle, John & Capalbo, Susan & Mooney, Sian & Elliott, Edward & Paustian, Keith, 2003. "Spatial heterogeneity, contract design, and the efficiency of carbon sequestration policies for agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 46(2), pages 231-250, September.
    9. Zaher, U. & Stöckle, C. & Painter, K. & Higgins, S., 2013. "Life cycle assessment of the potential carbon credit from no- and reduced-tillage winter wheat-based cropping systems in Eastern Washington State," Agricultural Systems, Elsevier, vol. 122(C), pages 73-78.
    10. Gilhespy, Sarah L. & Anthony, Steven & Cardenas, Laura & Chadwick, David & del Prado, Agustin & Li, Changsheng & Misselbrook, Thomas & Rees, Robert M. & Salas, William & Sanz-Cobena, Alberto & Smith, , 2014. "First 20 years of DNDC (DeNitrification DeComposition): Model evolution," Ecological Modelling, Elsevier, vol. 292(C), pages 51-62.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cecchin, Andrea & Pourhashem, Ghasideh & Gesch, Russ W. & Lenssen, Andrew W. & Mohammed, Yesuf A. & Patel, Swetabh & Berti, Marisol T., 2021. "Environmental trade-offs of relay-cropping winter cover crops with soybean in a maize-soybean cropping system," Agricultural Systems, Elsevier, vol. 189(C).
    2. Xiaobo Xue Romeiko & Zhijian Guo & Yulei Pang & Eun Kyung Lee & Xuesong Zhang, 2020. "Comparing Machine Learning Approaches for Predicting Spatially Explicit Life Cycle Global Warming and Eutrophication Impacts from Corn Production," Sustainability, MDPI, vol. 12(4), pages 1-19, February.
    3. Piernicola Masella & Incoronata Galasso, 2020. "A Comparative Cradle-to-Gate Life Cycle Study of Bio-Energy Feedstock from Camelina sativa , an Italian Case Study," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    4. Martinez, Sara & Alvarez, Sergio & Capuano, Anibal & Delgado, Maria del Mar, 2020. "Environmental performance of animal feed production from Camelina sativa (L.) Crantz: Influence of crop management practices under Mediterranean conditions," Agricultural Systems, Elsevier, vol. 177(C).
    5. Berti, Marisol & Johnson, Burton & Ripplinger, David & Gesch, Russ & Aponte, Alfredo, 2017. "Environmental impact assessment of double- and relay-cropping with winter camelina in the northern Great Plains, USA," Agricultural Systems, Elsevier, vol. 156(C), pages 1-12.
    6. Andrea Cecchin & Ghasideh Pourhashem & Russ W. Gesch & Yesuf A. Mohammed & Swetabh Patel & Andrew W. Lenssen & Marisol T. Berti, 2021. "The Environmental Impact of Ecological Intensification in Soybean Cropping Systems in the U.S. Upper Midwest," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    7. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    8. Manning, Dale & Rad, Mani Rouhi & Ogle, Stephen, 2022. "Inferring the Supply of GHG Abatement from Agricultural Lands," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322539, Agricultural and Applied Economics Association.
    9. Erik Nelson & Virginia Matzek, 2016. "Carbon Credits Compete Poorly With Agricultural Commodities In An Optimized Model Of Land Use In Northern California," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 7(04), pages 1-24, November.
    10. repec:ags:aaea22:335675 is not listed on IDEAS
    11. Stephen G. Wiedemann & Quan V. Nguyen & Simon J. Clarke, 2022. "Using LCA and Circularity Indicators to Measure the Sustainability of Textiles—Examples of Renewable and Non-Renewable Fibres," Sustainability, MDPI, vol. 14(24), pages 1-14, December.
    12. Molle, Francois & Berkoff, Jeremy, 2007. "Water pricing in irrigation: the lifetime of an idea," Book Chapters,, International Water Management Institute.
    13. John M. Antle & Roberto O. Valdivia, 2006. "Modelling the supply of ecosystem services from agriculture: a minimum‐data approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 50(1), pages 1-15, March.
    14. Hanna Karlsson Potter & Dalia M. M. Yacout & Kajsa Henryson, 2023. "Climate Assessment of Vegetable Oil and Biodiesel from Camelina Grown as an Intermediate Crop in Cereal-Based Crop Rotations in Cold Climate Regions," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
    15. Antle, John M. & Diagana, Bocar & Stoorvogel, Jetse J. & Valdivia, Roberto O., 2010. "Minimum-data analysis of ecosystem service supply in semi-subsistence agricultural systems," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 54(4), pages 1-17.
    16. Dominique Desbois, 2020. "Economics of Agricultural Carbon Sequestration in Soils," Agricultural Research & Technology: Open Access Journal, Juniper Publishers Inc., vol. 24(3), pages 127-128, June.
    17. Gren, Ing-Marie & Carlsson, Mattias & Elofsson, Katarina & Munnich, Miriam, 2012. "Stochastic carbon sinks for combating carbon dioxide emissions in the EU," Energy Economics, Elsevier, vol. 34(5), pages 1523-1531.
    18. Cai, Hao & Burnham, Andrew & Chen, Rui & Wang, Michael, 2017. "Wells to wheels: Environmental implications of natural gas as a transportation fuel," Energy Policy, Elsevier, vol. 109(C), pages 565-578.
    19. Collins-Sowah, Peron A., 2018. "Theoretical conception of climate-smart agriculture," Working Papers of Agricultural Policy WP2018-02, University of Kiel, Department of Agricultural Economics, Chair of Agricultural Policy.
    20. Lutengano Mwinuka & Khamaldin Daud Mutabazi & Frieder Graef & Stefan Sieber & Jeremia Makindara & Anthony Kimaro & Götz Uckert, 2017. "Simulated willingness of farmers to adopt fertilizer micro-dosing and rainwater harvesting technologies in semi-arid and sub-humid farming systems in Tanzania," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 9(6), pages 1237-1253, December.
    21. Zhao, Zheng & Cao, Linkui & Deng, Jia & Sha, Zhimin & Chu, Changbin & Zhou, Deping & Wu, Shuhang & Lv, Weiguang, 2020. "Modeling CH4 and N2O emission patterns and mitigation potential from paddy fields in Shanghai, China with the DNDC model," Agricultural Systems, Elsevier, vol. 178(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:24:y:2019:i:2:d:10.1007_s11027-018-9804-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.