IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v189y2021ics0308521x21000159.html
   My bibliography  Save this article

Environmental trade-offs of relay-cropping winter cover crops with soybean in a maize-soybean cropping system

Author

Listed:
  • Cecchin, Andrea
  • Pourhashem, Ghasideh
  • Gesch, Russ W.
  • Lenssen, Andrew W.
  • Mohammed, Yesuf A.
  • Patel, Swetabh
  • Berti, Marisol T.

Abstract

Winter camelina [Camelina sativa (L.) Crantz] and field pennycress [Thlaspi arvense L.] are oilseed feedstocks that can be employed as winter-hardy cover crops in the current cropping systems in the U.S. upper Midwest. In addition to provide multiple ecosystem services, they can be a further source of income for the farmer. However, using these cover crops is a new agricultural practice that has only been studied recently. The objective of this study was to assess and compare the environmental performance of a maize [Zea mays L.]-soybean [Glycine max (L.) Merr.] cropping system with different winter cover crops - camelina, pennycress, and rye (Secale cereale L.) - in the U.S. upper Midwest. Field experiments were carried out from 2016 to 2017 (2-year maize-soybean sequence) at three locations: Morris (Minnesota), Ames (Iowa), and Prosper (North Dakota). The environmental impact assessment was carried out using a “cradle-to-gate” life cycle assessment methodology. Four impact categories were assessed: global warming potential (GWP), eutrophication, soil erosion, and soil organic carbon (SOC) variation. Two functional units (FU) were selected: (1) 1 ha year−1, and (2) $1 net margin. When expressed with the FU ha yr−1, across the three locations cover crops had (a) lower eutrophication potential and water soil erosion, and (b) lower GWP if the cover crop was not fertilized with nitrogen. Camelina and pennycress were more effective than rye in reducing soil losses, while the three cover crops provided similar results for eutrophication potential. The results for the SOC variation were mixed, but the sequence with rye had the best performance at all locations. When expressed with the FU $ net margin, sequences including camelina and pennycress were overall the worst sequences in mitigating greenhouse gas emissions and nutrient and soil losses. This negative performance was mainly due to the seed yield reduction in the second year of the sequence for both the main cash crop (soybean) and the relayed-cover crop compared with the conventional sequence maize-soybean. Such result led to a lower net margin per hectare in the sequences including camelina and pennycress when compared with the control. The results of this study suggest that the introduction of camelina and pennycress as winter-hardy cover crops has a strong potential for reducing the environmental impacts of the maize-soybean rotation. However, a field management optimization of these cover crops in a relay-cropping system is needed to make them a sustainable agricultural practice.

Suggested Citation

  • Cecchin, Andrea & Pourhashem, Ghasideh & Gesch, Russ W. & Lenssen, Andrew W. & Mohammed, Yesuf A. & Patel, Swetabh & Berti, Marisol T., 2021. "Environmental trade-offs of relay-cropping winter cover crops with soybean in a maize-soybean cropping system," Agricultural Systems, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:agisys:v:189:y:2021:i:c:s0308521x21000159
    DOI: 10.1016/j.agsy.2021.103062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X21000159
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2021.103062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miller, Patrick & Kumar, Amit, 2013. "Development of emission parameters and net energy ratio for renewable diesel from Canola and Camelina," Energy, Elsevier, vol. 58(C), pages 426-437.
    2. Nemecek, Thomas & Dubois, David & Huguenin-Elie, Olivier & Gaillard, Gérard, 2011. "Life cycle assessment of Swiss farming systems: I. Integrated and organic farming," Agricultural Systems, Elsevier, vol. 104(3), pages 217-232, March.
    3. Jane M. F. Johnson & Veronica Acosta-Martinez & Cynthia A. Cambardella & Nancy W. Barbour, 2013. "Crop and Soil Responses to Using Corn Stover as a Bioenergy Feedstock: Observations from the Northern US Corn Belt," Agriculture, MDPI, vol. 3(1), pages 1-18, February.
    4. Pratt, Michelle R. & Tyner, Wallace E. & Muth, David J. & Kladivko, Eileen J., 2014. "Synergies between cover crops and corn stover removal," Agricultural Systems, Elsevier, vol. 130(C), pages 67-76.
    5. Krohn, Brian J. & Fripp, Matthias, 2012. "A life cycle assessment of biodiesel derived from the “niche filling” energy crop camelina in the USA," Applied Energy, Elsevier, vol. 92(C), pages 92-98.
    6. Prechsl, Ulrich E. & Wittwer, Raphael & van der Heijden, Marcel G.A. & Lüscher, Gisela & Jeanneret, Philippe & Nemecek, Thomas, 2017. "Assessing the environmental impacts of cropping systems and cover crops: Life cycle assessment of FAST, a long-term arable farming field experiment," Agricultural Systems, Elsevier, vol. 157(C), pages 39-50.
    7. Schipanski, Meagan E. & Barbercheck, Mary & Douglas, Margaret R. & Finney, Denise M. & Haider, Kristin & Kaye, Jason P. & Kemanian, Armen R. & Mortensen, David A. & Ryan, Matthew R. & Tooker, John & W, 2014. "A framework for evaluating ecosystem services provided by cover crops in agroecosystems," Agricultural Systems, Elsevier, vol. 125(C), pages 12-22.
    8. Berti, Marisol & Johnson, Burton & Ripplinger, David & Gesch, Russ & Aponte, Alfredo, 2017. "Environmental impact assessment of double- and relay-cropping with winter camelina in the northern Great Plains, USA," Agricultural Systems, Elsevier, vol. 156(C), pages 1-12.
    9. Nemecek, Thomas & Huguenin-Elie, Olivier & Dubois, David & Gaillard, Gérard & Schaller, Britta & Chervet, Andreas, 2011. "Life cycle assessment of Swiss farming systems: II. Extensive and intensive production," Agricultural Systems, Elsevier, vol. 104(3), pages 233-245, March.
    10. Aurore Philibert & Chantal Loyce & David Makowski, 2012. "Quantifying Uncertainties in N2O Emission Due to N Fertilizer Application in Cultivated Areas," PLOS ONE, Public Library of Science, vol. 7(11), pages 1-9, November.
    11. Grace, Peter R. & Philip Robertson, G. & Millar, Neville & Colunga-Garcia, Manuel & Basso, Bruno & Gage, Stuart H. & Hoben, John, 2011. "The contribution of maize cropping in the Midwest USA to global warming: A regional estimate," Agricultural Systems, Elsevier, vol. 104(3), pages 292-296, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kanthilanka, H. & Ramilan, T. & Farquharson, R.J. & Weerahewa, J., 2023. "Optimal nitrogen fertilizer decisions for rice farming in a cascaded tank system in Sri Lanka: An analysis using an integrated crop, hydro-nutrient and economic model," Agricultural Systems, Elsevier, vol. 207(C).
    2. Andrea Cecchin & Ghasideh Pourhashem & Russ W. Gesch & Yesuf A. Mohammed & Swetabh Patel & Andrew W. Lenssen & Marisol T. Berti, 2021. "The Environmental Impact of Ecological Intensification in Soybean Cropping Systems in the U.S. Upper Midwest," Sustainability, MDPI, vol. 13(4), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Berti, Marisol & Johnson, Burton & Ripplinger, David & Gesch, Russ & Aponte, Alfredo, 2017. "Environmental impact assessment of double- and relay-cropping with winter camelina in the northern Great Plains, USA," Agricultural Systems, Elsevier, vol. 156(C), pages 1-12.
    2. Andrea Cecchin & Ghasideh Pourhashem & Russ W. Gesch & Yesuf A. Mohammed & Swetabh Patel & Andrew W. Lenssen & Marisol T. Berti, 2021. "The Environmental Impact of Ecological Intensification in Soybean Cropping Systems in the U.S. Upper Midwest," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    3. Martinez, Sara & Alvarez, Sergio & Capuano, Anibal & Delgado, Maria del Mar, 2020. "Environmental performance of animal feed production from Camelina sativa (L.) Crantz: Influence of crop management practices under Mediterranean conditions," Agricultural Systems, Elsevier, vol. 177(C).
    4. John M. Antle & Seojin Cho & S. M. Hossein Tabatabaie & Roberto O. Valdivia, 2019. "Economic and environmental performance of dryland wheat-based farming systems in a 1.5 °C world," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(2), pages 165-180, February.
    5. Piernicola Masella & Incoronata Galasso, 2020. "A Comparative Cradle-to-Gate Life Cycle Study of Bio-Energy Feedstock from Camelina sativa , an Italian Case Study," Sustainability, MDPI, vol. 12(22), pages 1-21, November.
    6. Behroozeh, Samira & Hayati, Dariush & Karami, Ezatollah, 2022. "Determining and validating criteria to measure energy consumption sustainability in agricultural greenhouses," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    7. Zhen, Wei & Qin, Quande & Wei, Yi-Ming, 2017. "Spatio-temporal patterns of energy consumption-related GHG emissions in China's crop production systems," Energy Policy, Elsevier, vol. 104(C), pages 274-284.
    8. Vogel, Everton & Martinelli, Gabrielli & Artuzo, Felipe Dalzotto, 2021. "Environmental and economic performance of paddy field-based crop-livestock systems in Southern Brazil," Agricultural Systems, Elsevier, vol. 190(C).
    9. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    10. Pradeleix, L. & Roux, P. & Bouarfa, S. & Bellon-Maurel, V., 2023. "Multilevel life cycle assessment to evaluate prospective agricultural development scenarios in a semi-arid irrigated region of Tunisia," Agricultural Systems, Elsevier, vol. 212(C).
    11. Pradeleix, L. & Roux, P. & Bouarfa, S. & Bellon-Maurel, V., 2022. "Multilevel environmental assessment of regional farming activities with Life Cycle Assessment: Tackling data scarcity and farm diversity with Life Cycle Inventories based on Agrarian System Diagnosis," Agricultural Systems, Elsevier, vol. 196(C).
    12. Houshyar, Ehsan & Grundmann, Philipp, 2017. "Environmental impacts of energy use in wheat tillage systems: A comparative life cycle assessment (LCA) study in Iran," Energy, Elsevier, vol. 122(C), pages 11-24.
    13. Liang, Long & Lal, Rattan & Ridoutt, Bradley G. & Zhao, Guishen & Du, Zhangliu & Li, Li & Feng, Dangyang & Wang, Liyuan & Peng, Peng & Hang, Sheng & Wu, Wenliang, 2018. "Multi-indicator assessment of a water-saving agricultural engineering project in North Beijing, China," Agricultural Water Management, Elsevier, vol. 200(C), pages 34-46.
    14. El Chami, D. & Daccache, A., 2015. "Assessing sustainability of winter wheat production under climate change scenarios in a humid climate — An integrated modelling framework," Agricultural Systems, Elsevier, vol. 140(C), pages 19-25.
    15. Chen, Xuqi & Gao, Zhifeng & Swisher, Marilyn & House, Lisa & Zhao, Xin, 2018. "Eco-labeling in the Fresh Produce Market: Not All Environmentally Friendly Labels Are Equally Valued," Ecological Economics, Elsevier, vol. 154(C), pages 201-210.
    16. Forte, Annachiara & Zucaro, Amalia & De Vico, Gionata & Fierro, Angelo, 2016. "Carbon footprint of heliciculture: A case study from an Italian experimental farm," Agricultural Systems, Elsevier, vol. 142(C), pages 99-111.
    17. Jankowski, Krzysztof J. & Sokólski, Mateusz, 2021. "Spring camelina: Effect of mineral fertilization on the energy efficiency of biomass production," Energy, Elsevier, vol. 220(C).
    18. Murphy, Fionnuala & Devlin, Ger & McDonnell, Kevin, 2014. "Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances," Applied Energy, Elsevier, vol. 116(C), pages 1-8.
    19. Tendall, Danielle M. & Gaillard, Gérard, 2015. "Environmental consequences of adaptation to climate change in Swiss agriculture: An analysis at farm level," Agricultural Systems, Elsevier, vol. 132(C), pages 40-51.
    20. Netshipale, A.J. & Raidimi, E.N. & Mashiloane, M.L. & de Boer, I.J.M. & Oosting, S.J., 2022. "Farming system diversity and its drivers in land reform farms of the Waterberg District, South Africa," Land Use Policy, Elsevier, vol. 117(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:189:y:2021:i:c:s0308521x21000159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.