IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v23y2018i7d10.1007_s11027-017-9778-4.html
   My bibliography  Save this article

Valuing deaths or years of life lost? Economic benefits of avoided mortality from early heat warning systems

Author

Listed:
  • Aline Chiabai

    (Basque Centre for Climate Change BC3)

  • Joseph V. Spadaro

    (Basque Centre for Climate Change BC3
    SERC)

  • Marc B. Neumann

    (Basque Centre for Climate Change BC3
    IKERBASQUE, Basque Foundation for Science)

Abstract

The study aims to explore the main drivers influencing the economic appraisal of heat warning systems by integrating epidemiological modelling and benefit-cost analysis. To shed insights on heat wave mortality valuation, we consider three valuation schemes: (i) a traditional one, where the value of a statistical life (VSL) is applied to both displaced and premature mortality; (ii) an intermediate one, with VSL applied for premature mortality and value of a life year (VOLY) for displaced mortality; and (iii) a conservative one, where both premature and displaced mortality are quantified in terms of loss of life expectancy, and then valued using the VOLY approach. When applying these three schemes to Madrid (Spain), we obtain a benefit-cost ratio varying from 12 to 3700. We find that the choice of the valuation scheme has the largest influence, whereas other parameters such as attributable risk, displaced mortality ratio, or the comprehensiveness and effectiveness of the heat warning system are less influential. The results raise the question of which is the most appropriate approach to value mortality in the context of heat waves, given that the lower bound estimate for the benefit-cost ratio (option iii using VOLY) is up to two orders of magnitude lower than the value based on the traditional VSL approach (option i). The choice of the valuation methodology has significant implications for public health authorities at the local and regional scale, which becomes highly relevant for locations where the application of the VOLY approach could lead to benefit-cost ratios significantly lower than 1. We propose that specific metrics for premature and displaced VOLYs should be developed for the context of heat waves. Until such values are available, we suggest testing the economic viability of heat warning systems under the three proposed valuation schemes (i–iii) and using values for VOLY commonly applied in air pollution as the health end points are similar. Lastly, periodical reassessment of heat alert plans should be performed by public health authorities to monitor their long-term viability and cost-effectiveness.

Suggested Citation

  • Aline Chiabai & Joseph V. Spadaro & Marc B. Neumann, 2018. "Valuing deaths or years of life lost? Economic benefits of avoided mortality from early heat warning systems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(7), pages 1159-1176, October.
  • Handle: RePEc:spr:masfgc:v:23:y:2018:i:7:d:10.1007_s11027-017-9778-4
    DOI: 10.1007/s11027-017-9778-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-017-9778-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-017-9778-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Detlef Vuuren & Elmar Kriegler & Brian O’Neill & Kristie Ebi & Keywan Riahi & Timothy Carter & Jae Edmonds & Stephane Hallegatte & Tom Kram & Ritu Mathur & Harald Winkler, 2014. "A new scenario framework for Climate Change Research: scenario matrix architecture," Climatic Change, Springer, vol. 122(3), pages 373-386, February.
    2. Simon Gosling & Jason Lowe & Glenn McGregor & Mark Pelling & Bruce Malamud, 2009. "Associations between elevated atmospheric temperature and human mortality: a critical review of the literature," Climatic Change, Springer, vol. 92(3), pages 299-341, February.
    3. Henrik Lindhjem & Ståle Navrud & Nils Axel Braathen & Vincent Biausque, 2011. "Valuing Mortality Risk Reductions from Environmental, Transport, and Health Policies: A Global Meta‐Analysis of Stated Preference Studies," Risk Analysis, John Wiley & Sons, vol. 31(9), pages 1381-1407, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kerstin Pfeifer & Daniel Oudin Åström & Žanna Martinsone & Darja Kaļužnaja & Anna Oudin, 2020. "Evaluating Mortality Response Associated with Two Different Nordic Heat Warning Systems in Riga, Latvia," IJERPH, MDPI, vol. 17(21), pages 1-10, October.
    2. Marcello Iriti & Prisco Piscitelli & Eduardo Missoni & Alessandro Miani, 2020. "Air Pollution and Health: The Need for a Medical Reading of Environmental Monitoring Data," IJERPH, MDPI, vol. 17(7), pages 1-6, March.
    3. Prisco Piscitelli & Barbara Valenzano & Emanuele Rizzo & Giuseppe Maggiotto & Matteo Rivezzi & Felice Esposito Corcione & Alessandro Miani, 2019. "Air Pollution and Estimated Health Costs Related to Road Transportations of Goods in Italy: A First Healthcare Burden Assessment," IJERPH, MDPI, vol. 16(16), pages 1-11, August.
    4. Lucie Adélaïde & Olivier Chanel & Mathilde Pascal, 2022. "Health effects from heat waves in France: an economic evaluation," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(1), pages 119-131, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Verdin & Kathryn Grace & Frank Davenport & Chris Funk & Greg Husak, 2021. "Can we advance individual-level heat-health research through the application of stochastic weather generators?," Climatic Change, Springer, vol. 164(1), pages 1-13, January.
    2. Lanzi, Elisa & Dellink, Rob & Chateau, Jean, 2018. "The sectoral and regional economic consequences of outdoor air pollution to 2060," Energy Economics, Elsevier, vol. 71(C), pages 89-113.
    3. Xi Chen & Chih Ming Tan & Xiaobo Zhang & Xin Zhang, 2020. "The effects of prenatal exposure to temperature extremes on birth outcomes: the case of China," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(4), pages 1263-1302, October.
    4. Mahieu, Pierre-Alexandre & Andersson, Henrik & Beaumais, Olivier & Crastes dit Sourd, Romain & Hess, François-Charles & Wolff, François-Charles, 2017. "Stated preferences: a unique database composed of 1657 recent published articles in journals related to agriculture, environment, or health," Review of Agricultural, Food and Environmental Studies, Institut National de la Recherche Agronomique (INRA), vol. 98(3), November.
    5. McManamay, Ryan A. & DeRolph, Christopher R. & Surendran-Nair, Sujithkumar & Allen-Dumas, Melissa, 2019. "Spatially explicit land-energy-water future scenarios for cities: Guiding infrastructure transitions for urban sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 880-900.
    6. Thomas Pregger & Tobias Naegler & Wolfgang Weimer-Jehle & Sigrid Prehofer & Wolfgang Hauser, 2020. "Moving towards socio-technical scenarios of the German energy transition—lessons learned from integrated energy scenario building," Climatic Change, Springer, vol. 162(4), pages 1743-1762, October.
    7. Richard Taylor & Ruth Butterfield & Tiago Capela Lourenço & Adis Dzebo & Henrik Carlsen & Richard J. T. Klein, 2020. "Surveying perceptions and practices of high-end climate change," Climatic Change, Springer, vol. 161(1), pages 65-87, July.
    8. Roson, Roberto & Damania, Richard, 2016. "Simulating the Macroeconomic Impact of Future Water Scarcity an Assessment of Alternative Scenarios," Conference papers 332687, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    9. Matteo Fontana & Massimo Tavoni & Simone Vantini, 2020. "Global Sensitivity and Domain-Selective Testing for Functional-Valued Responses: An Application to Climate Economy Models," Papers 2006.13850, arXiv.org, revised Apr 2024.
    10. Enrica De Cian & Ian Sue Wing, 2016. "Global Energy Demand in a Warming Climate," Working Papers 2016.16, Fondazione Eni Enrico Mattei.
    11. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    12. Victor Nechifor & Matthew Winning, 2017. "The impacts of higher CO2 concentrations over global crop production and irrigation water requirements," EcoMod2017 10487, EcoMod.
    13. Dugan, Anna & Mayer, Jakob & Thaller, Annina & Bachner, Gabriel & Steininger, Karl W., 2022. "Developing policy packages for low-carbon passenger transport: A mixed methods analysis of trade-offs and synergies," Ecological Economics, Elsevier, vol. 193(C).
    14. Patrick Carlin & Brian E. Dixon & Kosali I. Simon & Ryan Sullivan & Coady Wing, 2022. "How Undervalued is the Covid-19 Vaccine? Evidence from Discrete Choice Experiments and VSL Benchmarks," NBER Working Papers 30118, National Bureau of Economic Research, Inc.
    15. Carl-Friedrich Schleussner & Joeri Rogelj & Michiel Schaeffer & Tabea Lissner & Rachel Licker & Erich M. Fischer & Reto Knutti & Anders Levermann & Katja Frieler & William Hare, 2016. "Science and policy characteristics of the Paris Agreement temperature goal," Nature Climate Change, Nature, vol. 6(9), pages 827-835, September.
    16. D. J. Rasmussen & Scott Kulp & Robert E. Kopp & Michael Oppenheimer & Benjamin H. Strauss, 2022. "Popular extreme sea level metrics can better communicate impacts," Climatic Change, Springer, vol. 170(3), pages 1-17, February.
    17. Weihua Dong & Zhao Liu & Lijie Zhang & Qiuhong Tang & Hua Liao & Xian'en Li, 2014. "Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island," Sustainability, MDPI, vol. 6(10), pages 1-24, October.
    18. Shiva Zargar & Yuan Yao & Qingshi Tu, 2022. "A review of inventory modeling methods for missing data in life cycle assessment," Journal of Industrial Ecology, Yale University, vol. 26(5), pages 1676-1689, October.
    19. Zheng, Zhoumin & Xu, Nuo & Khan, Mohsin & Pedersen, Michael & Abdalgader, Tarteel & Zhang, Lai, 2024. "Nonlinear impacts of climate change on dengue transmission in mainland China: Underlying mechanisms and future projection," Ecological Modelling, Elsevier, vol. 492(C).
    20. Hongliang Zhang & Jianhong E. Mu & Bruce A. McCarl & Jialing Yu, 2022. "The impact of climate change on global energy use," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(1), pages 1-19, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:23:y:2018:i:7:d:10.1007_s11027-017-9778-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.