IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v23y2018i4d10.1007_s11027-017-9744-1.html
   My bibliography  Save this article

Forecasting industrial water demand in Huaihe River Basin due to environmental changes

Author

Listed:
  • Xiao-jun Wang

    (Nanjing Hydraulic Research Institute
    Research Center for Climate Change, Ministry of Water Resources
    Beijing Normal University)

  • Jian-yun Zhang

    (Nanjing Hydraulic Research Institute
    Research Center for Climate Change, Ministry of Water Resources)

  • Shamsuddin Shahid

    (Universiti Teknologi Malaysia)

  • Shou-hai Bi

    (Department of Water Resources, Ministry of Water Resources)

  • Amgad Elmahdi

    (Bureau of Meteorology)

  • Chuan-hua Liao

    (Nanjing Tech University)

  • You-de Li

    (Huaihe River Water Resources Commission)

Abstract

A framework is proposed for forecasting industrial water demand in the context of climate change, economic growth, and technological development. The framework was tested in five sub-basins of Huaihe River of China, namely Upstream of Huaihe River (UH), Middlestream of Huaihe River (MH), Downstream of Huaihe River (DH), Yishusi River (YSSR), and Coastal River of Shandong Peninsula (CSP) to project future changes in industrial water demand under different environment change scenarios. Results showed that industrial water demand in Huaihe River basin will increase in the range of 10 to 44.6% due to economic development, water-saving technological advances, and climate change. The highest increase was projected by general circulation model (GCM) BCC-CSM1–1 (179.16 × 108 m3) and the lowest by GCM GISS-E2-R (132.4 × 108 m3) in 2020, while the GCM BNU-ESM projected the highest increase (190.57 × 108 m3) and GCM CNRM-CM5 the lowest (160.41 × 108 m3) in 2030. Among the different sub-basins, the highest increase was projected in MH sub-basin where industrial water demand is already very high. On the other hand, the lowest increase in industrial water demand was projected in UH sub-basin. The rapid growth of high water-consuming industries and increased water demand for cooling due to temperature rise are the major causes of the sharp increase in industrial water demand in the basin. The framework developed in the study can be used for reliable forecasting of industrial water demand which in turn can help in selection of an appropriate water management strategy for adaptation to global environmental changes.

Suggested Citation

  • Xiao-jun Wang & Jian-yun Zhang & Shamsuddin Shahid & Shou-hai Bi & Amgad Elmahdi & Chuan-hua Liao & You-de Li, 2018. "Forecasting industrial water demand in Huaihe River Basin due to environmental changes," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(4), pages 469-483, April.
  • Handle: RePEc:spr:masfgc:v:23:y:2018:i:4:d:10.1007_s11027-017-9744-1
    DOI: 10.1007/s11027-017-9744-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11027-017-9744-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11027-017-9744-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kristin Linnerud & Torben K. Mideksa & Gunnar S. Eskeland, 2011. "The Impact of Climate Change on Nuclear Power Supply," The Energy Journal, , vol. 32(1), pages 149-168, January.
    2. Koch, Hagen & Vögele, Stefan, 2009. "Dynamic modelling of water demand, water availability and adaptation strategies for power plants to global change," Ecological Economics, Elsevier, vol. 68(7), pages 2031-2039, May.
    3. Arnaud Reynaud, 2003. "An Econometric Estimation of Industrial Water Demand in France," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 25(2), pages 213-232, June.
    4. Claudia Pahl-Wostl, 2007. "Transitions towards adaptive management of water facing climate and global change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(1), pages 49-62, January.
    5. Jeßberger Christoph & Sindram Maximilian & Zimmer Markus, 2011. "Global Warming Induced Water-Cycle Changes and Industrial Production – A Scenario Analysis for the Upper Danube River Basin," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(3), pages 415-439, June.
    6. Zachariadis, Theodoros, 2010. "Forecast of electricity consumption in Cyprus up to the year 2030: The potential impact of climate change," Energy Policy, Elsevier, vol. 38(2), pages 744-750, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Liu & Yuyan Zhou & Lihua Chen & Lichuan Wang, 2023. "Assessing the Impact of Climate Change on Water Usage in Typical Industrial Enterprises," Sustainability, MDPI, vol. 15(13), pages 1-18, June.
    2. Wencong Yue & Zhongqi Liu & Meirong Su & Meng Xu & Qiangqiang Rong & Chao Xu & Zhenkun Tan & Xuming Jiang & Zhixin Su & Yanpeng Cai, 2022. "Inclusion of Ecological Water Requirements in Optimization of Water Resource Allocation Under Changing Climatic Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(2), pages 551-570, January.
    3. Hong Cai & Xueqing Ma & Pengyu Chen & Yanlong Guo, 2024. "Study on Driving Factors and Spatiotemporal Differentiation of Eco-Environmental Quality in Jianghuai River Basin of China," Sustainability, MDPI, vol. 16(11), pages 1-18, May.
    4. Shaokun He & Shenglian Guo & Guang Yang & Kebing Chen & Dedi Liu & Yanlai Zhou, 2020. "Optimizing Operation Rules of Cascade Reservoirs for Adapting Climate Change," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 101-120, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao-jun Wang & Jian-yun Zhang & Shamsuddin Shahid & En-hong Guan & Yong-xiang Wu & Juan Gao & Rui-min He, 2016. "Adaptation to climate change impacts on water demand," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(1), pages 81-99, January.
    2. Pechan, Anna & Eisenack, Klaus, 2014. "The impact of heat waves on electricity spot markets," Energy Economics, Elsevier, vol. 43(C), pages 63-71.
    3. Koch, Hagen & Vögele, Stefan, 2013. "Hydro-climatic conditions and thermoelectric electricity generation – Part I: Development of models," Energy, Elsevier, vol. 63(C), pages 42-51.
    4. Hoffmann, Bastian & Häfele, Sebastian & Karl, Ute, 2013. "Analysis of performance losses of thermal power plants in Germany – A System Dynamics model approach using data from regional climate modelling," Energy, Elsevier, vol. 49(C), pages 193-203.
    5. Grant R. McDermott & Øivind A. Nilse, 2014. "Electricity Prices, River Temperatures, and Cooling Water Scarcity," Land Economics, University of Wisconsin Press, vol. 90(1), pages 131-148.
    6. Eyer, Jonathan & Wichman, Casey J., 2018. "Does water scarcity shift the electricity generation mix toward fossil fuels? Empirical evidence from the United States," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 224-241.
    7. Olmstead, Sheila M., 2014. "Climate change adaptation and water resource management: A review of the literature," Energy Economics, Elsevier, vol. 46(C), pages 500-509.
    8. Dirk Rübbelke & Stefan Vögele, 2013. "Short-term distributional consequences of climate change impacts on the power sector: who gains and who loses?," Climatic Change, Springer, vol. 116(2), pages 191-206, January.
    9. Zamanipour, Behzad & Ghadaksaz, Hesam & Keppo, Ilkka & Saboohi, Yadollah, 2023. "Electricity supply and demand dynamics in Iran considering climate change-induced stresses," Energy, Elsevier, vol. 263(PE).
    10. H. Koch & S. Vögele & M. Kaltofen & M. Grossmann & U. Grünewald, 2014. "Security of Water Supply and Electricity Production: Aspects of Integrated Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(6), pages 1767-1780, April.
    11. Eisenack, Klaus, 2016. "Institutional adaptation to cooling water scarcity for thermoelectric power generation under global warming," Ecological Economics, Elsevier, vol. 124(C), pages 153-163.
    12. Bogmans, Christian W.J. & Dijkema, Gerard P.J. & van Vliet, Michelle T.H., 2017. "Adaptation of thermal power plants: The (ir)relevance of climate (change) information," Energy Economics, Elsevier, vol. 62(C), pages 1-18.
    13. Khan, Iftekhar & Alam, Firoz & Alam, Quamrul, 2013. "The global climate change and its effect on power generation in Bangladesh," Energy Policy, Elsevier, vol. 61(C), pages 1460-1470.
    14. Fuente, David & Kabubo-Mariara, Jane & Kimuyu, Peter & Mwaura, Mbutu & Whittington, Dale, 2017. "Assessing the Performance of Alternative Water and Sanitation Tariffs: The Case of Nairobi, Kenya," EfD Discussion Paper 17-21, Environment for Development, University of Gothenburg.
    15. SarahM. Jordaan & Afreen Siddiqi & William Kakenmaster & AliceC. Hill, 2019. "The Climate Vulnerabilities of Global Nuclear Power," Global Environmental Politics, MIT Press, vol. 19(4), pages 3-13, November.
    16. Joon Sik Kim & Peter W. J. Batey & Yanting Fan & Sheng Zhong, 2021. "Embracing integrated watershed revitalization in Suzhou, China: learning from global case studies," Asia-Pacific Journal of Regional Science, Springer, vol. 5(2), pages 565-595, June.
    17. Fullerton, Thomas M. & Juarez, David A. & Walke, Adam G., 2012. "Residential electricity consumption in Seattle," Energy Economics, Elsevier, vol. 34(5), pages 1693-1699.
    18. Guerra, Omar J. & Reklaitis, Gintaras V., 2018. "Advances and challenges in water management within energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4009-4019.
    19. T. D. Pol & S. Gabbert & H.-P. Weikard & E. C. Ierland & E. M. T. Hendrix, 2017. "A Minimax Regret Analysis of Flood Risk Management Strategies Under Climate Change Uncertainty and Emerging Information," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(4), pages 1087-1109, December.
    20. Otieno, Jackson & Cook, Joseph & Fuente, David, 2023. "The elasticity of commercial water demand in Nairobi, Kenya," EfD Discussion Paper 23-4, Environment for Development, University of Gothenburg.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:23:y:2018:i:4:d:10.1007_s11027-017-9744-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.