IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v18y2013i4p491-512.html
   My bibliography  Save this article

Reduction targets and abatement costs of developing countries resulting from global and developed countries’ reduction targets by 2050

Author

Listed:
  • Michel Elzen
  • Angelica Beltran
  • Andries Hof
  • Bas Ruijven
  • Jasper Vliet

Abstract

The European Union (EU) has advocated an emission reduction target for developed countries of 80% to 95% below the 1990 level by 2050, and a global reduction target of 50%. Developing countries have resisted the inclusion of these targets in both the UN Framework Convention on Climate Change Copenhagen Accord and Cancún Agreements. This paper analyses what these targets would imply for emission targets, abatement costs and energy consumption of developing countries, taking into account the conditional emission reduction pledges for 2020. An 80% reduction target for developed countries would imply more stringent per capita emission targets for developing countries than developed countries by 2050. Moreover, abatement costs of developing countries would be higher than those of developed countries. An 85% to 90% reduction target for developed countries would result in similar per capita emission targets and abatement costs for developed and developing countries by 2050. Total reduction targets for developing countries would range from 30% to 40% below 2005 levels by 2050 and from 30% to 35% above 2005 levels by 2030. The 2030 target for China would be 40% to 45% above 2005 levels, compared to a target for the EU of 45% to 50% below 1990 and for the United States of America (USA) 30% to 35% below 1990. Emission target trajectories for Brazil, South Africa and China would peak before 2025 and for India by around 2025. From the analysis, we may conclude that from the viewpoint of developing countries either developed countries increase their target above 85%, and/or make substantial side-payments. Copyright Springer Science+Business Media B.V. 2013

Suggested Citation

  • Michel Elzen & Angelica Beltran & Andries Hof & Bas Ruijven & Jasper Vliet, 2013. "Reduction targets and abatement costs of developing countries resulting from global and developed countries’ reduction targets by 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(4), pages 491-512, April.
  • Handle: RePEc:spr:masfgc:v:18:y:2013:i:4:p:491-512
    DOI: 10.1007/s11027-012-9371-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-012-9371-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11027-012-9371-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Ruijven, Bas J. & van Vuuren, Detlef P. & van Vliet, Jasper & Mendoza Beltran, Angelica & Deetman, Sebastiaan & den Elzen, Michel G.J., 2012. "Implications of greenhouse gas emission mitigation scenarios for the main Asian regions," Energy Economics, Elsevier, vol. 34(S3), pages 459-469.
    2. Niklas H�hne & Michel den Elzen & Martin Weiss, 2006. "Common but differentiated convergence (CDC): a new conceptual approach to long-term climate policy," Climate Policy, Taylor & Francis Journals, vol. 6(2), pages 181-199, March.
    3. van Vuuren, Detlef P. & Stehfest, Elke & den Elzen, Michel G.J. & van Vliet, Jasper & Isaac, Morna, 2010. "Exploring IMAGE model scenarios that keep greenhouse gas radiative forcing below 3 W/m2 in 2100," Energy Economics, Elsevier, vol. 32(5), pages 1105-1120, September.
    4. van Vuuren, Detlef P. & Hoogwijk, Monique & Barker, Terry & Riahi, Keywan & Boeters, Stefan & Chateau, Jean & Scrieciu, Serban & van Vliet, Jasper & Masui, Toshihiko & Blok, Kornelis & Blomen, Eliane , 2009. "Comparison of top-down and bottom-up estimates of sectoral and regional greenhouse gas emission reduction potentials," Energy Policy, Elsevier, vol. 37(12), pages 5125-5139, December.
    5. Garnaut,Ross, 2008. "The Garnaut Climate Change Review," Cambridge Books, Cambridge University Press, number 9780521744447, October.
    6. P. R. Shukla & Subash Dhar & Diptiranjan Mahapatra, 2008. "Low-carbon society scenarios for India," Climate Policy, Taylor & Francis Journals, vol. 8(sup1), pages 156-176, December.
    7. Ottmar Edenhofer , Brigitte Knopf, Terry Barker, Lavinia Baumstark, Elie Bellevrat, Bertrand Chateau, Patrick Criqui, Morna Isaac, Alban Kitous, Socrates Kypreos, Marian Leimbach, Kai Lessmann, Bertra, 2010. "The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    8. Malte Meinshausen & Nicolai Meinshausen & William Hare & Sarah C. B. Raper & Katja Frieler & Reto Knutti & David J. Frame & Myles R. Allen, 2009. "Greenhouse-gas emission targets for limiting global warming to 2 °C," Nature, Nature, vol. 458(7242), pages 1158-1162, April.
    9. Jiahua Pan & Jonathan Phillips & Ying Chen, 2008. "China's balance of emissions embodied in trade: approaches to measurement and allocating international responsibility," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 24(2), pages 354-376, Summer.
    10. Ottmar Edenhofer & Brigitte Knopf & Terry Barker & Lavinia Baumstark & Elie Bellevrat & Bertrand Chateau & Patrick Criqui & Morna Isaac & Alban Kitous & Socrates Kypreos & Marian Leimbach & Kai Lessma, 2010. "The Economics of Low Stabilization: Model Comparison of Mitigation Strategies and Costs," The Energy Journal, , vol. 31(1_suppl), pages 11-48, June.
    11. Winkler, Harald & Hughes, Alison & Marquard, Andrew & Haw, Mary & Merven, Bruno, 2011. "South Africa's greenhouse gas emissions under business-as-usual: The technical basis of 'Growth without Constraints' in the Long-Term Mitigation Scenarios," Energy Policy, Elsevier, vol. 39(10), pages 5818-5828, October.
    12. Michaelowa, Axel & Jotzo, Frank, 2005. "Transaction costs, institutional rigidities and the size of the clean development mechanism," Energy Policy, Elsevier, vol. 33(4), pages 511-523, March.
    13. Detlef Vuuren & Keywan Riahi, 2011. "The relationship between short-term emissions and long-term concentration targets," Climatic Change, Springer, vol. 104(3), pages 793-801, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lining Wang & Wenying Chen & Hongjun Zhang & Ding Ma, 2017. "Dynamic equity carbon permit allocation scheme to limit global warming to two degrees," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(4), pages 609-628, April.
    2. Li, Nan & Chen, Wenying, 2019. "Energy-water nexus in China's energy bases: From the Paris agreement to the Well Below 2 Degrees target," Energy, Elsevier, vol. 166(C), pages 277-286.
    3. Li, Nan & Chen, Wenying, 2018. "Modeling China’s interprovincial coal transportation under low carbon transition," Applied Energy, Elsevier, vol. 222(C), pages 267-279.
    4. Zhang, Qiang & Chen, Wenying, 2020. "Modeling China’s interprovincial electricity transmission under low carbon transition," Applied Energy, Elsevier, vol. 279(C).
    5. Qingmeng Tong & Lu Zhang & Junbiao Zhang, 2017. "Evaluation of GHG Mitigation Measures in Rice Cropping and Effects of Farmer’s Characteristics: Evidence from Hubei, China," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
    6. Lining Wang & Wenying Chen & XunZhang Pan & Nan Li & Huan Wang & Danyang Li & Han Chen, 2018. "Scale and benefit of global carbon markets under the 2 °C goal: integrated modeling and an effort-sharing platform," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(8), pages 1207-1223, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Johansson, Daniel J. A. & Lucas, Paul L. & Weitzel, Matthias & Ahlgren, Erik O. & Bazaz, A. B. & Chen, Wenying & den Elzen, Michel G. J. & Ghosh, Joydeep & Grahn, Maria & Liang, Qiao-Mei & Peterson, S, 2012. "Multi-model analyses of the economic and energy implications for China and India in a post-Kyoto climate regime," Kiel Working Papers 1808, Kiel Institute for the World Economy (IfW Kiel).
    2. Derek Lemoine & Sabine Fuss & Jana Szolgayova & Michael Obersteiner & Daniel Kammen, 2012. "The influence of negative emission technologies and technology policies on the optimal climate mitigation portfolio," Climatic Change, Springer, vol. 113(2), pages 141-162, July.
    3. van Ruijven, Bas J. & Weitzel, Matthias & den Elzen, Michel G.J. & Hof, Andries F. & van Vuuren, Detlef P. & Peterson, Sonja & Narita, Daiju, 2012. "Emission allowances and mitigation costs of China and India resulting from different effort-sharing approaches," Energy Policy, Elsevier, vol. 46(C), pages 116-134.
    4. Mendoza Beltran, Angelica & den Elzen, Michel G.J. & Hof, Andries F. & van Vuuren, Detlef P. & van Vliet, Jasper, 2011. "Exploring the bargaining space within international climate negotiations based on political, economic and environmental considerations," Energy Policy, Elsevier, vol. 39(11), pages 7361-7371.
    5. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    6. Jasper Vliet & Maarten Berg & Michiel Schaeffer & Detlef Vuuren & Michel Elzen & Andries Hof & Angelica Mendoza Beltran & Malte Meinshausen, 2012. "Copenhagen Accord Pledges imply higher costs for staying below 2°C warming," Climatic Change, Springer, vol. 113(2), pages 551-561, July.
    7. Riahi, Keywan & Kriegler, Elmar & Johnson, Nils & Bertram, Christoph & den Elzen, Michel & Eom, Jiyong & Schaeffer, Michiel & Edmonds, Jae & Isaac, Morna & Krey, Volker & Longden, Thomas & Luderer, Gu, 2015. "Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 8-23.
    8. Luderer, Gunnar & Pietzcker, Robert C. & Kriegler, Elmar & Haller, Markus & Bauer, Nico, 2012. "Asia's role in mitigating climate change: A technology and sector specific analysis with ReMIND-R," Energy Economics, Elsevier, vol. 34(S3), pages 378-390.
    9. Lucas, Paul L. & Shukla, P.R. & Chen, Wenying & van Ruijven, Bas J. & Dhar, Subash & den Elzen, Michel G.J. & van Vuuren, Detlef P., 2013. "Implications of the international reduction pledges on long-term energy system changes and costs in China and India," Energy Policy, Elsevier, vol. 63(C), pages 1032-1041.
    10. Steckel, Jan Christoph & Jakob, Michael & Marschinski, Robert & Luderer, Gunnar, 2011. "From carbonization to decarbonization?--Past trends and future scenarios for China's CO2 emissions," Energy Policy, Elsevier, vol. 39(6), pages 3443-3455, June.
    11. Favero, Alice & Mendelsohn, Robert & Sohngen, Brent, 2016. "Carbon Storage and Bioenergy: Using Forests for Climate Mitigation," MITP: Mitigation, Innovation and Transformation Pathways 232215, Fondazione Eni Enrico Mattei (FEEM).
    12. Ottmar Edenhofer & Susanne Kadner & Christoph von Stechow & Gregor Schwerhoff & Gunnar Luderer, 2014. "Linking climate change mitigation research to sustainable development," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 30, pages 476-499, Edward Elgar Publishing.
    13. Xunzhang, Pan & Wenying, Chen & Clarke, Leon E. & Lining, Wang & Guannan, Liu, 2017. "China's energy system transformation towards the 2°C goal: Implications of different effort-sharing principles," Energy Policy, Elsevier, vol. 103(C), pages 116-126.
    14. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012. "Learning or lock-in: Optimal technology policies to support mitigation," Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
    15. Volker Krey, 2014. "Global energy-climate scenarios and models: a review," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 3(4), pages 363-383, July.
    16. Matthias Kalkuhl & Ottmar Edenhofer & Kai Lessmann, 2015. "The Role of Carbon Capture and Sequestration Policies for Climate Change Mitigation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 60(1), pages 55-80, January.
    17. Ulrike Kornek & Jan Christoph Steckel & Kai Lessmann & Ottmar Edenhofer, 2017. "The climate rent curse: new challenges for burden sharing," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 17(6), pages 855-882, December.
    18. Favero, Alice & Massetti, Emanuele, 2014. "Trade of woody biomass for electricity generation under climate mitigation policy," Resource and Energy Economics, Elsevier, vol. 36(1), pages 166-190.
    19. van Vuuren, Detlef P. & Stehfest, Elke & den Elzen, Michel G.J. & van Vliet, Jasper & Isaac, Morna, 2010. "Exploring IMAGE model scenarios that keep greenhouse gas radiative forcing below 3 W/m2 in 2100," Energy Economics, Elsevier, vol. 32(5), pages 1105-1120, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:18:y:2013:i:4:p:491-512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.