IDEAS home Printed from https://ideas.repec.org/a/spr/masfgc/v17y2012i7p769-791.html
   My bibliography  Save this article

CO 2 -emission reduction in China’s residential building sector and contribution to the national climate change mitigation targets in 2020

Author

Listed:
  • Andreas Oberheitmann

Abstract

Between 1980 and 2007, in the Chinese building sector in urban and rural areas, coal was mainly substituted with electricity and natural gas. Growing income will further increase energy consumption and CO 2 -emissions in the building sector. Using an econometric model, disaggregated energy demand and related CO 2 -emissions in the residential sector as well for the whole economy are estimated and forecasted until 2050. In 2009, the Chinese government pledged itself to reduce CO 2 -intensity by 40%–45% in 2020 compared to 2005. Aim of this article is to assess to which extent the measures in the building sector in China can contribute to this target. Main results of the analysis are: (a) The primary energy source coal was mainly substituted by electricity generated with coal. Apart from convenience gains, the environmental advantages are questionable. (b) Between 2010 and 2050, energy demand in the building sector will grow by 2.0%–4.1% per annum leading to CO 2 -emissions at least almost tripling from about 560 mill. tons in 2010 to about 1,500 mill. tons in 2050. (c) The energy efficiency gains in the building sector and other sectors of the Chinese economy, however, are not enough to fulfill the national CO 2 -intensity targets. The reduction of the CO 2 -intensity of GDP would be 37.2% in the BAU-scenario, and 31.9% in the LOW-scenario. Only in the HIGH-scenario (46.3%), the economy is growing efficient enough relative to the induced CO 2 -emissions. The remaining CO2-emission reductions could be gained by additional promotion of renewable energies (mainly solar and geo-thermal) in the building sector. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Andreas Oberheitmann, 2012. "CO 2 -emission reduction in China’s residential building sector and contribution to the national climate change mitigation targets in 2020," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(7), pages 769-791, October.
  • Handle: RePEc:spr:masfgc:v:17:y:2012:i:7:p:769-791
    DOI: 10.1007/s11027-011-9343-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11027-011-9343-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11027-011-9343-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Richerzhagen, Carmen & von Frieling, Tabea & Hansen, Nils & Minnaert, Anja & Netzer, Nina & Rußbild, Jonas, 2008. "Energy efficiency in buildings in China: policies, barriers and opportunities," IDOS Studies, German Institute of Development and Sustainability (IDOS), volume 41, number 41, July.
    2. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    3. Zhou, Nan & Levine, Mark D. & Price, Lynn, 2010. "Overview of current energy-efficiency policies in China," Energy Policy, Elsevier, vol. 38(11), pages 6439-6452, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Lu & Li, Jing & Chiang, Yat Hung, 2013. "Promoting energy efficient building in China through clean development mechanism," Energy Policy, Elsevier, vol. 57(C), pages 338-346.
    2. Verma, Piyush & Patel, Nitish & Nair, Nirmal-Kumar C. & Brent, Alan C., 2018. "Improving the energy efficiency of the New Zealand economy: A policy comparison with other renewable-rich countries," Energy Policy, Elsevier, vol. 122(C), pages 506-517.
    3. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
    4. Elzen, Michel den & Fekete, Hanna & Höhne, Niklas & Admiraal, Annemiek & Forsell, Nicklas & Hof, Andries F. & Olivier, Jos G.J. & Roelfsema, Mark & van Soest, Heleen, 2016. "Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030?," Energy Policy, Elsevier, vol. 89(C), pages 224-236.
    5. Zhang, ZhongXiang, 2014. "Programs, Prices and Policies Towards Energy Conservation and Environmental Quality in China," Working Papers 249427, Australian National University, Centre for Climate Economics & Policy.
    6. Vitaliy Roud & Thomas Wolfgang Thurner, 2018. "The Influence of State‐Ownership on Eco‐Innovations in Russian Manufacturing Firms," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1213-1227, October.
    7. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    8. Louis-Gaëtan Giraudet & Anna Petronevich & Laurent Faucheux, 2018. "How do lenders price energy efficiency? Evidence from posted interest rates for unsecured credit in France [Comment les créditeurs valorisent-ils l'efficacité énergétique? Une analyse des taux d'in," Working Papers hal-01890636, HAL.
    9. Kube, Roland & von Graevenitz, Kathrine & Löschel, Andreas & Massier, Philipp, 2019. "Do voluntary environmental programs reduce emissions? EMAS in the German manufacturing sector," Energy Economics, Elsevier, vol. 84(S1).
    10. Arlan Brucal & Michael Roberts, 2015. "Can Energy Efficiency Standards Reduce Prices and Improve Quality? Evidence from the US Clothes Washer Market," Working Papers 2015-5, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    11. Michelsen, Carl Christian & Madlener, Reinhard, 2016. "Switching from fossil fuel to renewables in residential heating systems: An empirical study of homeowners' decisions in Germany," Energy Policy, Elsevier, vol. 89(C), pages 95-105.
    12. Maya M. Papineau, 2015. "Setting the Standard: Commercial Electricity Consumption Responses to Energy Codes," Carleton Economic Papers 15-05, Carleton University, Department of Economics.
    13. Zhang, ZhongXiang, 2013. "Energy and Environmental Issues and Policy in China," Climate Change and Sustainable Development 162375, Fondazione Eni Enrico Mattei (FEEM).
    14. Jalo, Noor & Johansson, Ida & Kanchiralla, Fayas Malik & Thollander, Patrik, 2021. "Do energy efficiency networks help reduce barriers to energy efficiency? -A case study of a regional Swedish policy program for industrial SMEs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    15. Jonathan Sinton & Joeri de Wit, 2014. "Exploiting Market-Based Mechanisms to Meet Utilities' Energy Efficiency Obligations," World Bank Publications - Reports 18678, The World Bank Group.
    16. Karlsson, Rasmus, 2012. "Carbon lock-in, rebound effects and China at the limits of statism," Energy Policy, Elsevier, vol. 51(C), pages 939-945.
    17. Jason Shogren, 1998. "A Political Economy in an Ecological Web," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 11(3), pages 557-570, April.
    18. ZhongXiang Zhang, 2014. "Energy Prices, Subsidies and Resource Tax Reform in China," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 1(3), pages 439-454, September.
    19. Mohamed, Ahmed M.A. & Al-Habaibeh, Amin & Abdo, Hafez & Elabar, Sherifa, 2015. "Towards exporting renewable energy from MENA region to Europe: An investigation into domestic energy use and householders’ energy behaviour in Libya," Applied Energy, Elsevier, vol. 146(C), pages 247-262.
    20. Gale A. Boyd & Jonathan M. Lee, 2020. "Relative Effectiveness of Energy Efficiency Programs versus Market Based Climate Policies in the Chemical Industry," The Energy Journal, , vol. 41(3), pages 39-62, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:17:y:2012:i:7:p:769-791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.