IDEAS home Printed from https://ideas.repec.org/a/spr/lsprsc/v17y2024i1d10.1007_s12076-024-00392-w.html
   My bibliography  Save this article

Simulating built-up expansion in west Delhi using a neural network coupled agent based prioritised growth model

Author

Listed:
  • Aviral Marwal

    (University of Cambridge Cambridge)

  • Elisabete A. Silva

    (University of Cambridge Cambridge)

Abstract

The expansion of built-up areas is a complex phenomenon shaped by a range of spatial and aspatial factors that vary across space and time. Most of the previous studies have simulated land use patterns without considering the impact of futuristic development policies on land use. To address this gap, the study proposes a neural network coupled agent based prioritised growth model applied to the West region of Delhi. The model incorporates micro agents representing private developers who make land development decisions based on a cell’s transition potential from non-built-up to built-up state, calculated by the neural network model. Macro agents, representing government planning agencies, enforce development constraints and provide incentives for development on a non-built-up cell through planned interventions. Simulations for 2021 demonstrate improved accuracy (kappa 0.85) with planned interventions compared to without any planned interventions (kappa 0.83), referred to as a business-as-usual scenario. The model also simulates land use for 2041 under these two scenarios. The resulting change in spatial growth under these two scenarios is visualised through a change map, which identifies areas of gain and loss in the built-up area as growth patterns shift from a business-as-usual scenario to a planned growth scenario. This model offers a useful tool for planners to understand where future growth is expected and how to channelise the growth through strategic planning interventions.

Suggested Citation

  • Aviral Marwal & Elisabete A. Silva, 2024. "Simulating built-up expansion in west Delhi using a neural network coupled agent based prioritised growth model," Letters in Spatial and Resource Sciences, Springer, vol. 17(1), pages 1-23, December.
  • Handle: RePEc:spr:lsprsc:v:17:y:2024:i:1:d:10.1007_s12076-024-00392-w
    DOI: 10.1007/s12076-024-00392-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12076-024-00392-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12076-024-00392-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Motuma Shiferaw Regasa & Michael Nones & Dereje Adeba, 2021. "A Review on Land Use and Land Cover Change in Ethiopian Basins," Land, MDPI, vol. 10(6), pages 1-18, June.
    2. Michael Batty, 2005. "Agents, Cells, and Cities: New Representational Models for Simulating Multiscale Urban Dynamics," Environment and Planning A, , vol. 37(8), pages 1373-1394, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdi Sheikh Goodarzi & Yousef Sakieh & Shabnam Navardi, 2017. "Scenario-based urban growth allocation in a rapidly developing area: a modeling approach for sustainability analysis of an urban-coastal coupled system," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 1103-1126, June.
    2. Maira Masood & Chunguang He & Shoukat Ali Shah & Syed Aziz Ur Rehman, 2024. "Land Use Change Impacts over the Indus Delta: A Case Study of Sindh Province, Pakistan," Land, MDPI, vol. 13(7), pages 1-25, July.
    3. Nick Malleson & Andrew Evans & Tony Jenkins, 2009. "An Agent-Based Model of Burglary," Environment and Planning B, , vol. 36(6), pages 1103-1123, December.
    4. Yusuyunjiang Mamitimin & Zibibula Simayi & Ayinuer Mamat & Bumairiyemu Maimaiti & Yunfei Ma, 2023. "FLUS Based Modeling of the Urban LULC in Arid and Semi-Arid Region of Northwest China: A Case Study of Urumqi City," Sustainability, MDPI, vol. 15(6), pages 1-14, March.
    5. Dimitris Ballas & Richard Kingston & John Stillwell & Jianhui Jin, 2007. "Building a Spatial Microsimulation-Based Planning Support System for Local Policy Making," Environment and Planning A, , vol. 39(10), pages 2482-2499, October.
    6. Janka Lengyel & Seraphim Alvanides & Jan Friedrich, 2023. "Modelling the interdependence of spatial scales in urban systems," Environment and Planning B, , vol. 50(1), pages 182-197, January.
    7. Zhou, Mingzhi & Zhou, Jiangping, 2024. "Multiscalar trip resilience and metro station-area characteristics: A case study of Hong Kong amid the pandemic," Journal of Transport Geography, Elsevier, vol. 116(C).
    8. Yuan Gao & Chuanrong Zhang & Qingsong He & Yaolin Liu, 2017. "Urban Ecological Security Simulation and Prediction Using an Improved Cellular Automata (CA) Approach—A Case Study for the City of Wuhan in China," IJERPH, MDPI, vol. 14(6), pages 1-20, June.
    9. Huang, Ruihong, 2020. "Transit-based job accessibility and urban spatial structure," Journal of Transport Geography, Elsevier, vol. 86(C).
    10. Sagi, Alon & Gal, Avigdor & Broitman, Dani & Czamanski, Daniel, 2024. "An unsupervised machine learning approach to the spatial analysis of urban systems through neighbourhoods’ dynamics," Land Use Policy, Elsevier, vol. 144(C).
    11. Verda Kocabas & Suzana Dragicevic, 2013. "Bayesian networks and agent-based modeling approach for urban land-use and population density change: a BNAS model," Journal of Geographical Systems, Springer, vol. 15(4), pages 403-426, October.
    12. Wang, Quan & Wang, Haijun & Chang, Ruihan & Zeng, Haoran & Bai, Xuepiao, 2022. "Dynamic simulation patterns and spatiotemporal analysis of land-use/land-cover changes in the Wuhan metropolitan area, China," Ecological Modelling, Elsevier, vol. 464(C).
    13. Lang, Wei & Long, Ying & Chen, Tingting & Li, Xun, 2019. "Reinvestigating China’s urbanization through the lens of allometric scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1429-1439.
    14. Mohamed R Ibrahim & James Haworth & Tao Cheng, 2021. "URBAN-i: From urban scenes to mapping slums, transport modes, and pedestrians in cities using deep learning and computer vision," Environment and Planning B, , vol. 48(1), pages 76-93, January.
    15. D'Acci, Luca, 2013. "A Modern Postmodern Urbanism The Systemic Retroactive game (SyR) between Bottom-up and Top-down," MPRA Paper 48991, University Library of Munich, Germany.
    16. Markos Mathewos & Semaria Moga Lencha & Misgena Tsegaye, 2022. "Land Use and Land Cover Change Assessment and Future Predictions in the Matenchose Watershed, Rift Valley Basin, Using CA-Markov Simulation," Land, MDPI, vol. 11(10), pages 1-28, September.
    17. Nick Malleson & Wouter Steenbeek & Martin A Andresen, 2019. "Identifying the appropriate spatial resolution for the analysis of crime patterns," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-23, June.
    18. Selamawit Haftu Gebresellase & Zhiyong Wu & Huating Xu & Wada Idris Muhammad, 2023. "Scenario-Based LULC Dynamics Projection Using the CA–Markov Model on Upper Awash Basin (UAB), Ethiopia," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    19. Yong Yang & Peter M Atkinson, 2008. "Individual Space – Time Activity-Based Model: A Model for the Simulation of Airborne Infectious-Disease Transmission by Activity-Bundle Simulation," Environment and Planning B, , vol. 35(1), pages 80-99, February.
    20. Haile Belay & Assefa M. Melesse & Getachew Tegegne, 2024. "Scenario-Based Land Use and Land Cover Change Detection and Prediction Using the Cellular Automata–Markov Model in the Gumara Watershed, Upper Blue Nile Basin, Ethiopia," Land, MDPI, vol. 13(3), pages 1-34, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lsprsc:v:17:y:2024:i:1:d:10.1007_s12076-024-00392-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.