URBAN-i: From urban scenes to mapping slums, transport modes, and pedestrians in cities using deep learning and computer vision
Author
Abstract
Suggested Citation
DOI: 10.1177/2399808319846517
Download full text from publisher
References listed on IDEAS
- repec:cai:popine:popu_p1998_10n1_0240 is not listed on IDEAS
- Nikhil Naik & Ramesh Raskar & César A. Hidalgo, 2016. "Cities Are Physical Too: Using Computer Vision to Measure the Quality and Impact of Urban Appearance," American Economic Review, American Economic Association, vol. 106(5), pages 128-132, May.
- Michael Batty, 2005. "Agents, Cells, and Cities: New Representational Models for Simulating Multiscale Urban Dynamics," Environment and Planning A, , vol. 37(8), pages 1373-1394, August.
- Isalgue, Antonio & Coch, Helena & Serra, Rafael, 2007. "Scaling laws and the modern city," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 643-649.
- Philip Salesses & Katja Schechtner & César A Hidalgo, 2013. "The Collaborative Image of The City: Mapping the Inequality of Urban Perception," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
- Luis Bettencourt & Geoffrey West, 2010. "A unified theory of urban living," Nature, Nature, vol. 467(7318), pages 912-913, October.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dorota Kamrowska-Załuska, 2021. "Impact of AI-Based Tools and Urban Big Data Analytics on the Design and Planning of Cities," Land, MDPI, vol. 10(11), pages 1-19, November.
- Chen Zuo & Chengcheng Liang & Jing Chen & Rui Xi & Junfei Zhang, 2023. "Machine Learning-Based Urban Renovation Design for Improving Wind Environment: A Case Study in Xi’an, China," Land, MDPI, vol. 12(4), pages 1-18, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Massimo Palme & Agnese Salvati, 2020. "Sustainability and Urban Metabolism," Sustainability, MDPI, vol. 12(1), pages 1-3, January.
- Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2018.
"Big Data And Big Cities: The Promises And Limitations Of Improved Measures Of Urban Life,"
Economic Inquiry, Western Economic Association International, vol. 56(1), pages 114-137, January.
- Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2015. "Big Data and Big Cities: The Promises and Limitations of Improved Measures of Urban Life," NBER Working Papers 21778, National Bureau of Economic Research, Inc.
- Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2015. "Big Data and Big Cities: The Promises and Limitations of Improved Measures of Urban Life," Harvard Business School Working Papers 16-065, Harvard Business School.
- Glaeser, Edward L. & Kominers, Scott Duke & Luca, Michael & Naik, Nikhil, 2015. "Big Data and Big Cities: The Promises and Limitations of Improved Measures for Urban Life," Working Paper Series 15-075, Harvard University, John F. Kennedy School of Government.
- Galdo, Virgilio & Li, Yue & Rama, Martin, 2021.
"Identifying urban areas by combining human judgment and machine learning: An application to India,"
Journal of Urban Economics, Elsevier, vol. 125(C).
- Galdo,Virgilio & Li,Yue-000316086 & Rama,Martin G., 2020. "Identifying Urban Areas by Combining Human Judgment and Machine Learning : An Application to India," Policy Research Working Paper Series 0160, The World Bank.
- Lang, Wei & Long, Ying & Chen, Tingting & Li, Xun, 2019. "Reinvestigating China’s urbanization through the lens of allometric scaling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1429-1439.
- Massimo Palme & José Guerra Ramírez, 2013. "A Critical Assessment and Projection of Urban Vertical Growth in Antofagasta, Chile," Sustainability, MDPI, vol. 5(7), pages 1-16, June.
- Zhang, Yonglin & Li, Shanlin & Dong, Rencai & Deng, Hongbing & Fu, Xiao & Wang, Chenxing & Yu, Tianshu & Jia, Tianxia & Zhao, Jingzhu, 2021. "Quantifying physical and psychological perceptions of urban scenes using deep learning," Land Use Policy, Elsevier, vol. 111(C).
- Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
- Alves, L.G.A. & Ribeiro, H.V. & Lenzi, E.K. & Mendes, R.S., 2014. "Empirical analysis on the connection between power-law distributions and allometries for urban indicators," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 175-182.
- Mehdi Sheikh Goodarzi & Yousef Sakieh & Shabnam Navardi, 2017. "Scenario-based urban growth allocation in a rapidly developing area: a modeling approach for sustainability analysis of an urban-coastal coupled system," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(3), pages 1103-1126, June.
- Huang, Siyu & Shi, Yi & Chen, Qinghua & Li, Xiaomeng, 2022. "The growth path of high-tech industries: Statistical laws and evolution demands," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
- Yang Yang & Chunlu Liu & Baizhen Li & Jilong Zhao, 2022. "Modelling and Forecast of Future Growth for Shandong’s Small Industrial Towns: A Scenario-Based Interactive Approach," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
- He, Yifan & Zhao, Chen & Zeng, An, 2022. "Ranking locations in a city via the collective home-work relations in human mobility data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
- Ioanna Arkoudi & Carlos Lima Azevedo & Francisco C. Pereira, 2021. "Combining Discrete Choice Models and Neural Networks through Embeddings: Formulation, Interpretability and Performance," Papers 2109.12042, arXiv.org, revised Sep 2021.
- Sarah Williams & Elizabeth Currid-Halkett, 2014. "Industry in Motion: Using Smart Phones to Explore the Spatial Network of the Garment Industry in New York City," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-11, February.
- Joao Meirelles & Camilo Rodrigues Neto & Fernando Fagundes Ferreira & Fabiano Lemes Ribeiro & Claudia Rebeca Binder, 2018. "Evolution of urban scaling: Evidence from Brazil," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-15, October.
- Daan Francois Toerien, 2022. "Linking Entrepreneurial Activities and Community Prosperity/Poverty in United States Counties: Use of the Enterprise Dependency Index," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
- A. Haven Kiers & Billy Krimmel & Caroline Larsen-Bircher & Kate Hayes & Ash Zemenick & Julia Michaels, 2022. "Different Jargon, Same Goals: Collaborations between Landscape Architects and Ecologists to Maximize Biodiversity in Urban Lawn Conversions," Land, MDPI, vol. 11(10), pages 1-18, September.
- David Levinson & David Giacomin & Antony Badsey-Ellis, 2014. "Accessibility and the choice of network investments in the London Underground," Working Papers 000124, University of Minnesota: Nexus Research Group.
- Varga, Levente & Tóth, Géza & Néda, Zoltán, 2017. "An improved radiation model and its applicability for understanding commuting patterns in Hungary," MPRA Paper 76806, University Library of Munich, Germany.
- Been, Vicki & Ellen, Ingrid Gould & Gedal, Michael & Glaeser, Edward & McCabe, Brian J., 2016. "Preserving history or restricting development? The heterogeneous effects of historic districts on local housing markets in New York City," Journal of Urban Economics, Elsevier, vol. 92(C), pages 16-30.
More about this item
Keywords
Computer vision; deep learning; convolutional neural networks; object-based detection; mapping slums; urban modelling; cities;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:48:y:2021:i:1:p:76-93. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.