IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v99y2012i3p615-630.html
   My bibliography  Save this article

Predictive accuracy of covariates for event times

Author

Listed:
  • Li Chen
  • D. Y. Lin
  • Donglin Zeng

Abstract

We propose a graphical measure, the generalized negative predictive function, to quantify the predictive accuracy of covariates for survival time or recurrent event times. This new measure characterizes the event-free probabilities over time conditional on a thresholded linear combination of covariates and has direct clinical utility. We show that this function is maximized at the set of covariates truly related to event times and thus can be used to compare the predictive accuracy of different sets of covariates. We construct nonparametric estimators for this function under right censoring and prove that the proposed estimators, upon proper normalization, converge weakly to zero-mean Gaussian processes. To bypass the estimation of complex density functions involved in the asymptotic variances, we adopt the bootstrap approach and establish its validity. Simulation studies demonstrate that the proposed methods perform well in practical situations. Two clinical studies are presented. Copyright 2012, Oxford University Press.

Suggested Citation

  • Li Chen & D. Y. Lin & Donglin Zeng, 2012. "Predictive accuracy of covariates for event times," Biometrika, Biometrika Trust, vol. 99(3), pages 615-630.
  • Handle: RePEc:oup:biomet:v:99:y:2012:i:3:p:615-630
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/ass018
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruosha Li & Jing Ning & Ziding Feng, 2022. "Estimation and inference of predictive discrimination for survival outcome risk prediction models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 219-240, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:99:y:2012:i:3:p:615-630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.