IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v27y2021i4d10.1007_s10985-021-09527-3.html
   My bibliography  Save this article

Instrumental variable estimation of early treatment effect in randomized screening trials

Author

Listed:
  • Sudipta Saha

    (University of Toronto)

  • Zhihui Liu

    (University Health Network)

  • Olli Saarela

    (University of Toronto)

Abstract

The primary analysis of randomized screening trials for cancer typically adheres to the intention-to-screen principle, measuring cancer-specific mortality reductions between screening and control arms. These mortality reductions result from a combination of the screening regimen, screening technology and the effect of the early, screening-induced, treatment. This motivates addressing these different aspects separately. Here we are interested in the causal effect of early versus delayed treatments on cancer mortality among the screening-detectable subgroup, which under certain assumptions is estimable from conventional randomized screening trial using instrumental variable type methods. To define the causal effect of interest, we formulate a simplified structural multi-state model for screening trials, based on a hypothetical intervention trial where screening detected individuals would be randomized into early versus delayed treatments. The cancer-specific mortality reductions after screening detection are quantified by a cause-specific hazard ratio. For this, we propose two estimators, based on an estimating equation and a likelihood expression. The methods extend existing instrumental variable methods for time-to-event and competing risks outcomes to time-dependent intermediate variables. Using the multi-state model as the basis of a data generating mechanism, we investigate the performance of the new estimators through simulation studies. In addition, we illustrate the proposed method in the context of CT screening for lung cancer using the US National Lung Screening Trial data.

Suggested Citation

  • Sudipta Saha & Zhihui Liu & Olli Saarela, 2021. "Instrumental variable estimation of early treatment effect in randomized screening trials," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 537-560, October.
  • Handle: RePEc:spr:lifeda:v:27:y:2021:i:4:d:10.1007_s10985-021-09527-3
    DOI: 10.1007/s10985-021-09527-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-021-09527-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-021-09527-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. Loeys & E. Goetghebeur, 2003. "A Causal Proportional Hazards Estimator for the Effect of Treatment Actually Received in a Randomized Trial with All-or-Nothing Compliance," Biometrics, The International Biometric Society, vol. 59(1), pages 100-105, March.
    2. Hui Nie & Jing Cheng & Dylan S. Small, 2011. "Inference for the Effect of Treatment on Survival Probability in Randomized Trials with Noncompliance and Administrative Censoring," Biometrics, The International Biometric Society, vol. 67(4), pages 1397-1405, December.
    3. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    4. L. Altstein & G. Li, 2013. "Latent Subgroup Analysis of a Randomized Clinical Trial through a Semiparametric Accelerated Failure Time Mixture Model," Biometrics, The International Biometric Society, vol. 69(1), pages 52-61, March.
    5. de Wreede, Liesbeth C. & Fiocco, Marta & Putter, Hein, 2011. "mstate: An R Package for the Analysis of Competing Risks and Multi-State Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 38(i07).
    6. repec:bla:istatr:v:83:y:2015:i:3:p:493-510 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaeun Choi & A. James O'Malley, 2017. "Estimating the causal effect of treatment in observational studies with survival time end points and unmeasured confounding," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 159-185, January.
    2. Bo Wei & Limin Peng & Mei‐Jie Zhang & Jason P. Fine, 2021. "Estimation of causal quantile effects with a binary instrumental variable and censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(3), pages 559-578, July.
    3. Hui Nie & Jing Cheng & Dylan S. Small, 2011. "Inference for the Effect of Treatment on Survival Probability in Randomized Trials with Noncompliance and Administrative Censoring," Biometrics, The International Biometric Society, vol. 67(4), pages 1397-1405, December.
    4. Linbo Wang & Eric Tchetgen Tchetgen & Torben Martinussen & Stijn Vansteelandt, 2023. "Instrumental variable estimation of the causal hazard ratio," Biometrics, The International Biometric Society, vol. 79(2), pages 539-550, June.
    5. Ditte Nørbo Sørensen & Torben Martinussen & Eric Tchetgen Tchetgen, 2019. "A causal proportional hazards estimator under homogeneous or heterogeneous selection in an IV setting," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(4), pages 639-659, October.
    6. Shengli An & Peter Zhang & Hong-Bin Fang, 2023. "Subgroup Identification in Survival Outcome Data Based on Concordance Probability Measurement," Mathematics, MDPI, vol. 11(13), pages 1-10, June.
    7. Shuwei Li & Limin Peng, 2023. "Instrumental variable estimation of complier causal treatment effect with interval‐censored data," Biometrics, The International Biometric Society, vol. 79(1), pages 253-263, March.
    8. Harold Alderman & John Hoddinott & Bill Kinsey, 2006. "Long term consequences of early childhood malnutrition," Oxford Economic Papers, Oxford University Press, vol. 58(3), pages 450-474, July.
    9. S Anukriti & Catalina Herrera‐Almanza & Praveen K. Pathak & Mahesh Karra, 2020. "Curse of the Mummy‐ji: The Influence of Mothers‐in‐Law on Women in India†," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(5), pages 1328-1351, October.
    10. Arnaud Chevalier & Colm Harmon & Vincent O’ Sullivan & Ian Walker, 2013. "The impact of parental income and education on the schooling of their children," IZA Journal of Labor Economics, Springer;Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 2(1), pages 1-22, December.
    11. González-Uribe, Juanita & Reyes, Santiago, 2021. "Identifying and boosting “Gazelles”: Evidence from business accelerators," Journal of Financial Economics, Elsevier, vol. 139(1), pages 260-287.
    12. Roxana Elena Manea, 2021. "School Feeding Programmes, Education and Food Security in Rural Malawi," CIES Research Paper series 63-2020, Centre for International Environmental Studies, The Graduate Institute.
    13. Clément de Chaisemartin & Luc Behaghel, 2020. "Estimating the Effect of Treatments Allocated by Randomized Waiting Lists," Econometrica, Econometric Society, vol. 88(4), pages 1453-1477, July.
    14. Giacomo De Giorgi & Michele Pellizzari & William Gui Woolston, 2012. "Class Size And Class Heterogeneity," Journal of the European Economic Association, European Economic Association, vol. 10(4), pages 795-830, August.
    15. David Card, 2022. "Design-Based Research in Empirical Microeconomics," American Economic Review, American Economic Association, vol. 112(6), pages 1773-1781, June.
    16. Jeffrey Smith, 2000. "A Critical Survey of Empirical Methods for Evaluating Active Labor Market Policies," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 136(III), pages 247-268, September.
    17. Heckman, James J. & Urzúa, Sergio, 2010. "Comparing IV with structural models: What simple IV can and cannot identify," Journal of Econometrics, Elsevier, vol. 156(1), pages 27-37, May.
    18. Ron Diris, 2017. "Don't Hold Back? The Effect of Grade Retention on Student Achievement," Education Finance and Policy, MIT Press, vol. 12(3), pages 312-341, Summer.
    19. Rajeev Dehejia, 2013. "The Porous Dialectic: Experimental and Non-Experimental Methods in Development Economics," WIDER Working Paper Series wp-2013-011, World Institute for Development Economic Research (UNU-WIDER).
    20. Stefano Clò & Tommaso Reggiani & Sabrina Ruberto, 2024. "Consumption Feedback and Water Saving: A Field Intervention Evaluation in the Metropolitan Area of Milan," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 87(9), pages 2259-2308, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:27:y:2021:i:4:d:10.1007_s10985-021-09527-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.