IDEAS home Printed from https://ideas.repec.org/a/spr/jtrsec/v11y2018i1d10.1007_s12198-018-0188-y.html
   My bibliography  Save this article

Can software defined radio be used to compromise ADS-B aircraft transponder signals?

Author

Listed:
  • Mark A. Revels

    (Western Kentucky University)

  • Mark Ciampa

    (Western Kentucky University)

Abstract

Air traffic control is moving from independent primary surveillance radar to the automatic dependent surveillance-broadcast (ADS-B) system. This holds the potential of reducing the total cost of deployment and improving the detection accuracy of aircraft. However, as currently being deployed these systems lack strong security mechanisms and are susceptible to a variety of radio frequency attacks. These attacks have been proffered by attackers at hacker conventions and by academic researchers. And many online sites even provide hacking “how-to” instructions on ADS-B. Is it possible for an attacker to manipulate ADS-B to interfere with an aircraft in flight using readily available tools? Using a basic $200 software defined radio (SDR) transceiver we simulated an ADS-B replay attack. Despite the advancement in SDR we find that the quality of SDR transceivers are still insufficient to perform a replay attack.

Suggested Citation

  • Mark A. Revels & Mark Ciampa, 2018. "Can software defined radio be used to compromise ADS-B aircraft transponder signals?," Journal of Transportation Security, Springer, vol. 11(1), pages 41-52, June.
  • Handle: RePEc:spr:jtrsec:v:11:y:2018:i:1:d:10.1007_s12198-018-0188-y
    DOI: 10.1007/s12198-018-0188-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12198-018-0188-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12198-018-0188-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. McCallie, Donald & Butts, Jonathan & Mills, Robert, 2011. "Security analysis of the ADS-B implementation in the next generation air transportation system," International Journal of Critical Infrastructure Protection, Elsevier, vol. 4(2), pages 78-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dudin, Mikhail & Sekerin, Vladimir & Parfenova, Maria & Babishin, Vladimir & Yurkevich, Evgeny, 2014. "Methodology Making Management Decisions Based on a Modified Ramsey Model," Published Papers dud11, Russian Presidential Academy of National Economy and Public Administration.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edquist, Charles & Zabala-Iturriagagoitia, Jon Mikel, 2012. "Public Procurement for Innovation as mission-oriented innovation policy," Research Policy, Elsevier, vol. 41(10), pages 1757-1769.
    2. Rudys, Saulius & Aleksandravicius, Jurgis & Aleksiejunas, Rimvydas & Konovaltsev, Andriy & Zhu, Chen & Greda, Lukasz, 2022. "Physical layer protection for ADS-B against spoofing and jamming," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
    3. Finke, Cindy & Butts, Jonathan & Mills, Robert & Grimaila, Michael, 2013. "Enhancing the security of aircraft surveillance in the next generation air traffic control system," International Journal of Critical Infrastructure Protection, Elsevier, vol. 6(1), pages 3-11.
    4. Matthew Smith & Martin Strohmeier & Vincent Lenders & Ivan Martinovic, 2022. "Understanding realistic attacks on airborne collision avoidance systems," Journal of Transportation Security, Springer, vol. 15(1), pages 87-118, June.
    5. Bada, Mousaab & Boubiche, Djallel Eddine & Lagraa, Nasreddine & Kerrache, Chaker Abdelaziz & Imran, Muhammad & Shoaib, Muhammad, 2021. "A policy-based solution for the detection of colluding GPS-Spoofing attacks in FANETs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 300-318.
    6. Mäurer, Nils & Guggemos, Tobias & Ewert, Thomas & Gräupl, Thomas & Schmitt, Corinna & Grundner-Culemann, Sophia, 2022. "Security in Digital Aeronautical Communications A Comprehensive Gap Analysis," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
    7. Khan, Suleman & Gaba, Gurjot Singh & Braeken, An & Kumar, Pardeep & Gurtov, Andrei, 2023. "AKAASH: A realizable authentication, key agreement, and secure handover approach for controller-pilot data link communications," International Journal of Critical Infrastructure Protection, Elsevier, vol. 42(C).
    8. Riahi Manesh, Mohsen & Kaabouch, Naima, 2017. "Analysis of vulnerabilities, attacks, countermeasures and overall risk of the Automatic Dependent Surveillance-Broadcast (ADS-B) system," International Journal of Critical Infrastructure Protection, Elsevier, vol. 19(C), pages 16-31.
    9. Li, Tengyao & Wang, Buhong, 2019. "Sequential collaborative detection strategy on ADS-B data attack," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 78-99.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jtrsec:v:11:y:2018:i:1:d:10.1007_s12198-018-0188-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.