IDEAS home Printed from https://ideas.repec.org/a/ibn/ijspjl/v8y2019i6p51.html
   My bibliography  Save this article

New Families of Generalized Lomax Distributions: Properties and Applications

Author

Listed:
  • Ahmad Alzaghal
  • Duha Hamed

Abstract

In this paper, we propose new families of generalized Lomax distributions named T-LomaxfYg. Using the methodology of the Transformed-Transformer, known as T-X framework, the T-Lomax families introduced are arising from the quantile functions of exponential, Weibull, log-logistic, logistic, Cauchy and extreme value distributions. Various structural properties of the new families are derived including moments, modes and Shannon entropies. Several new generalized Lomax distributions are studied. The shapes of these T-LomaxfYg distributions are very flexible and can be symmetric, skewed to the right, skewed to the left, or bimodal. The method of maximum likelihood is proposed for estimating the distributions parameters and a simulation study is carried out to assess its performance. Four applications of real data sets are used to demonstrate the flexibility of T-LomaxfYg family of distributions in fitting unimodal and bimodal data sets from di erent disciplines.

Suggested Citation

  • Ahmad Alzaghal & Duha Hamed, 2019. "New Families of Generalized Lomax Distributions: Properties and Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(6), pages 1-51, November.
  • Handle: RePEc:ibn:ijspjl:v:8:y:2019:i:6:p:51
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/download/0/0/41029/42723
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/ijsp/article/view/0/41029
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alzaatreh, Ayman & Famoye, Felix & Lee, Carl, 2014. "The gamma-normal distribution: Properties and applications," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 67-80.
    2. Ayman Alzaatreh & Carl Lee & Felix Famoye, 2013. "A new method for generating families of continuous distributions," METRON, Springer;Sapienza Università di Roma, vol. 71(1), pages 63-79, June.
    3. William T. Shaw & Ian R. C. Buckley, 2009. "The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map," Papers 0901.0434, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adebisi Ade Ogunde & Victoria Eshomomoh Laoye & Ogbonnaya Nzie Ezichi & Kayode Oguntuase Balogun, 2021. "Harris Extended Power Lomax Distribution: Properties, Inference and Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(4), pages 1-77, July.
    2. Sanaa Al-Marzouki & Farrukh Jamal & Christophe Chesneau & Mohammed Elgarhy, 2019. "Type II Topp Leone Power Lomax Distribution with Applications," Mathematics, MDPI, vol. 8(1), pages 1-26, December.
    3. Duha Hamed & Ahmad Alzaghal, 2021. "New class of Lindley distributions: properties and applications," Journal of Statistical Distributions and Applications, Springer, vol. 8(1), pages 1-22, December.
    4. Victor Korolev, 2023. "Analytic and Asymptotic Properties of the Generalized Student and Generalized Lomax Distributions," Mathematics, MDPI, vol. 11(13), pages 1-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boikanyo Makubate & Fastel Chipepa & Broderick Oluyede & Peter O. Peter, 2021. "The Marshall-Olkin Half Logistic-G Family of Distributions With Applications," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(2), pages 120-120, March.
    2. Muhammad H Tahir & Gauss M. Cordeiro, 2016. "Compounding of distributions: a survey and new generalized classes," Journal of Statistical Distributions and Applications, Springer, vol. 3(1), pages 1-35, December.
    3. Muhammad H. Tahir & Muhammad Adnan Hussain & Gauss M. Cordeiro & M. El-Morshedy & M. S. Eliwa, 2020. "A New Kumaraswamy Generalized Family of Distributions with Properties, Applications, and Bivariate Extension," Mathematics, MDPI, vol. 8(11), pages 1-28, November.
    4. Morad Alizadeh & Fazlollah Lak & Mahdi Rasekhi & Thiago G. Ramires & Haitham M. Yousof & Emrah Altun, 2018. "The odd log-logistic Topp–Leone G family of distributions: heteroscedastic regression models and applications," Computational Statistics, Springer, vol. 33(3), pages 1217-1244, September.
    5. Abdulaziz S. Alghamdi & M. M. Abd El-Raouf, 2023. "Exploring the Dynamics of COVID-19 with a Novel Family of Models," Mathematics, MDPI, vol. 11(7), pages 1-29, March.
    6. Zubair Ahmad & M. Elgarhy & G. G. Hamedani, 2018. "A new Weibull-X family of distributions: properties, characterizations and applications," Journal of Statistical Distributions and Applications, Springer, vol. 5(1), pages 1-18, December.
    7. M. Elgarhy & Muhammad Ahsan ul Haq & Qurat Ain, 2018. "Exponentiated Generalized Kumaraswamy Distribution with Applications," Annals of Data Science, Springer, vol. 5(2), pages 273-292, June.
    8. Abdisalam Hassan Muse & Samuel M. Mwalili & Oscar Ngesa, 2021. "On the Log-Logistic Distribution and Its Generalizations: A Survey," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(3), pages 1-93, June.
    9. M. Nassar & A. Alzaatreh & O. Abo-Kasem & M. Mead & M. Mansoor, 2018. "A New Family of Generalized Distributions Based on Alpha Power Transformation with Application to Cancer Data," Annals of Data Science, Springer, vol. 5(3), pages 421-436, September.
    10. Gayan Warahena-Liyanage & Broderick Oluyede & Thatayaone Moakofi & Whatmore Sengweni, 2023. "The New Exponentiated Half Logistic-Harris-G Family of Distributions with Actuarial Measures and Applications," Stats, MDPI, vol. 6(3), pages 1-29, July.
    11. Majdah M. Badr & Ibrahim Elbatal & Farrukh Jamal & Christophe Chesneau & Mohammed Elgarhy, 2020. "The Transmuted Odd Fréchet-G Family of Distributions: Theory and Applications," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
    12. Sadaf Khan & Muhammad H. Tahir & Farrukh Jamal, 2023. "Analysis of COVID-19 and cancer data using new half-logistic generated family of distributions," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 33(4), pages 71-95.
    13. Mahmoud Aldeni & Carl Lee & Felix Famoye, 2017. "Families of distributions arising from the quantile of generalized lambda distribution," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-18, December.
    14. Hadeel S Klakattawi, 2022. "Survival analysis of cancer patients using a new extended Weibull distribution," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.
    15. A. A. Ogunde & S. T. Fayose & B. Ajayi & D. O. Omosigho, 2020. "Properties, Inference and Applications of Alpha Power Extended Inverted Weibull Distribution," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 9(6), pages 1-90, November.
    16. Robert King & Irene Lena Hudson & Muhammad Shuaib Khan, 2016. "Transmuted Kumaraswamy Distribution," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 17(2), pages 183-210, June.
    17. Jiong Liu & R. A. Serota, 2023. "Rethinking Generalized Beta family of distributions," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 96(2), pages 1-14, February.
    18. Muhammad Shuaib Khan & Robert King & Irene Lena Hudson, 2016. "Transmuted Kumaraswamy Distribution," Statistics in Transition New Series, Polish Statistical Association, vol. 17(2), pages 183-210, June.
    19. Rana Muhammad Usman & Maryam Ilyas, 2024. "Power Burr X-T family of distributions: properties, estimation methods and real-life applications," Computational Statistics, Springer, vol. 39(6), pages 2949-2974, September.
    20. Nicollas S. S. da Costa & Maria do Carmo Soares de Lima & Gauss Moutinho Cordeiro, 2024. "A Bimodal Exponential Regression Model for Analyzing Dengue Fever Case Rates in the Federal District of Brazil," Mathematics, MDPI, vol. 12(21), pages 1-20, October.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijspjl:v:8:y:2019:i:6:p:51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.