IDEAS home Printed from https://ideas.repec.org/a/spr/jstada/v4y2017i1d10.1186_s40488-017-0055-6.html
   My bibliography  Save this article

Simulation of polyhedral convex contoured distributions

Author

Listed:
  • Wolf-Dieter Richter

    (University of Rostock)

  • Kay Schicker

    (University of Rostock)

Abstract

In low dimensions, the relatively easily implementable acceptance-rejection method for generating polyhedral convex contoured uniform distributions is compared to more sophisticated particular methods from the literature, and applied to drug combination studies. Based upon a stochastic representation, the method is extended to the general class of polyhedral convex contoured distributions of known dimension. Based upon a geometric measure representation, an algorithm for simulating corresponding probabilities of rather arbitrary random events is derived.

Suggested Citation

  • Wolf-Dieter Richter & Kay Schicker, 2017. "Simulation of polyhedral convex contoured distributions," Journal of Statistical Distributions and Applications, Springer, vol. 4(1), pages 1-19, December.
  • Handle: RePEc:spr:jstada:v:4:y:2017:i:1:d:10.1186_s40488-017-0055-6
    DOI: 10.1186/s40488-017-0055-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1186/s40488-017-0055-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1186/s40488-017-0055-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tian, Guo-Liang & Fang, Hong-Bin & Tan, Ming & Qin, Hong & Tang, Man-Lai, 2009. "Uniform distributions in a class of convex polyhedrons with applications to drug combination studies," Journal of Multivariate Analysis, Elsevier, vol. 100(8), pages 1854-1865, September.
    2. Balkema, A.A. & Embrechts, P. & Nolde, N., 2010. "Meta densities and the shape of their sample clouds," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1738-1754, August.
    3. Henschel, V. & Richter, W. -D., 2002. "Geometric Generalization of the Exponential Law," Journal of Multivariate Analysis, Elsevier, vol. 81(2), pages 189-204, May.
    4. Fang, Kai-Tai & Yang, Zhen-Hai, 2000. "On uniform design of experiments with restricted mixtures and generation of uniform distribution on some domains," Statistics & Probability Letters, Elsevier, vol. 46(2), pages 113-120, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wolf-Dieter Richter, 2019. "High-dimensional star-shaped distributions," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-12, December.
    2. Wolf-Dieter Richter, 2019. "On (p1,…,pk)-spherical distributions," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-18, December.
    3. Eckhard Liebscher & Wolf-Dieter Richter, 2016. "Estimation of Star-Shaped Distributions," Risks, MDPI, vol. 4(4), pages 1-37, November.
    4. Das, Bikramjit & Fasen-Hartmann, Vicky, 2024. "On heavy-tailed risks under Gaussian copula: The effects of marginal transformation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
    5. Liebscher Eckhard & Richter Wolf-Dieter, 2020. "Modelling with star-shaped distributions," Dependence Modeling, De Gruyter, vol. 8(1), pages 45-69, January.
    6. de Valk, Cees, 2016. "A large deviations approach to the statistics of extreme events," Other publications TiSEM 117b3ba0-0e40-4277-b25e-d, Tilburg University, School of Economics and Management.
    7. Wolf-Dieter Richter, 2017. "The Class of ( p , q )-spherical Distributions with an Extension of the Sector and Circle Number Functions," Risks, MDPI, vol. 5(3), pages 1-17, July.
    8. Simpson, Emma S. & Wadsworth, Jennifer L. & Tawn, Jonathan A., 2021. "A geometric investigation into the tail dependence of vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    9. Volkmar Henschel, 2002. "Statistical inference in simplicially contoured sample distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 56(3), pages 215-228, December.
    10. E. Hashorva, 2018. "Approximation of Some Multivariate Risk Measures for Gaussian Risks," Papers 1803.06922, arXiv.org, revised Oct 2018.
    11. Christian Genest & Johanna G. Nešlehová, 2020. "A Conversation With Paul Embrechts," International Statistical Review, International Statistical Institute, vol. 88(3), pages 521-547, December.
    12. Huang, Hengzhen & Chen, Xueping, 2021. "Compromise design for combination experiment of two drugs," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    13. Cyril Bachelard & Apostolos Chalkis & Vissarion Fisikopoulos & Elias Tsigaridas, 2024. "Randomized Control in Performance Analysis and Empirical Asset Pricing," Papers 2403.00009, arXiv.org.
    14. Liebscher Eckhard & Richter Wolf-Dieter, 2020. "Modelling with star-shaped distributions," Dependence Modeling, De Gruyter, vol. 8(1), pages 45-69, January.
    15. Owada, Takashi, 2019. "Topological crackle of heavy-tailed moving average processes," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 4965-4997.
    16. Nolde, Natalia, 2014. "Geometric interpretation of the residual dependence coefficient," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 85-95.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jstada:v:4:y:2017:i:1:d:10.1186_s40488-017-0055-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.