IDEAS home Printed from https://ideas.repec.org/a/spr/jsched/v24y2021i3d10.1007_s10951-021-00687-6.html
   My bibliography  Save this article

Makespan minimization with OR-precedence constraints

Author

Listed:
  • Felix Happach

    (Technische Universität München)

Abstract

We consider a variant of the NP-hard problem of assigning jobs to machines to minimize the completion time of the last job. Usually, precedence constraints are given by a partial order on the set of jobs, and each job requires all its predecessors to be completed before it can start. In this paper, we consider a different type of precedence relation that has not been discussed as extensively and is called OR-precedence. In order for a job to start, we require that at least one of its predecessors is completed—in contrast to all its predecessors. Additionally, we assume that each job has a release date before which it must not start. We prove that a simple List Scheduling algorithm due to Graham (Bell Syst Tech J 45(9):1563–1581, 1966) has an approximation guarantee of 2 and show that obtaining an approximation factor of $$4/3 - \varepsilon $$ 4 / 3 - ε is NP-hard. Further, we present a polynomial-time algorithm that solves the problem to optimality if preemptions are allowed. The latter result is in contrast to classical precedence constraints where the preemptive variant is already NP-hard. Our algorithm generalizes previous results for unit processing time jobs subject to OR-precedence constraints, but without release dates. The running time of our algorithm is $$O(n^2)$$ O ( n 2 ) for arbitrary processing times and it can be reduced to O(n) for unit processing times, where n is the number of jobs. The performance guarantees presented here match the best-known ones for special cases where classical precedence constraints and OR-precedence constraints coincide.

Suggested Citation

  • Felix Happach, 2021. "Makespan minimization with OR-precedence constraints," Journal of Scheduling, Springer, vol. 24(3), pages 319-328, June.
  • Handle: RePEc:spr:jsched:v:24:y:2021:i:3:d:10.1007_s10951-021-00687-6
    DOI: 10.1007/s10951-021-00687-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10951-021-00687-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10951-021-00687-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Brucker & M. R. Garey & D. S. Johnson, 1977. "Scheduling Equal-Length Tasks Under Treelike Precedence Constraints to Minimize Maximum Lateness," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 275-284, August.
    2. J. K. Lenstra & A. H. G. Rinnooy Kan, 1978. "Complexity of Scheduling under Precedence Constraints," Operations Research, INFORMS, vol. 26(1), pages 22-35, February.
    3. Robert McNaughton, 1959. "Scheduling with Deadlines and Loss Functions," Management Science, INFORMS, vol. 6(1), pages 1-12, October.
    4. T. C. Hu, 1961. "Parallel Sequencing and Assembly Line Problems," Operations Research, INFORMS, vol. 9(6), pages 841-848, December.
    5. Clyde L. Monma, 1982. "Linear-Time Algorithms for Scheduling on Parallel Processors," Operations Research, INFORMS, vol. 30(1), pages 116-124, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Kaiping & Shen, Guangya & Li, Liheng & Sun, Jianfei, 2023. "0-1 mathematical programming models for flexible process planning," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1160-1175.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tzafestas, Spyros & Triantafyllakis, Alekos, 1993. "Deterministic scheduling in computing and manufacturing systems: a survey of models and algorithms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 35(5), pages 397-434.
    2. Jiang, Xiaojuan & Lee, Kangbok & Pinedo, Michael L., 2021. "Ideal schedules in parallel machine settings," European Journal of Operational Research, Elsevier, vol. 290(2), pages 422-434.
    3. Timkovsky, Vadim G., 2003. "Identical parallel machines vs. unit-time shops and preemptions vs. chains in scheduling complexity," European Journal of Operational Research, Elsevier, vol. 149(2), pages 355-376, September.
    4. D. Prot & O. Bellenguez-Morineau, 2018. "A survey on how the structure of precedence constraints may change the complexity class of scheduling problems," Journal of Scheduling, Springer, vol. 21(1), pages 3-16, February.
    5. Lenstra, J. K. & Rinnooy Kan, A. H. G., 1980. "An Introduction To Multiprocessor Scheduling," Econometric Institute Archives 272258, Erasmus University Rotterdam.
    6. Nodari Vakhania, 2001. "Tight Performance Bounds of CP-Scheduling on Out-Trees," Journal of Combinatorial Optimization, Springer, vol. 5(4), pages 445-464, December.
    7. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    8. Finke, Gerd & Lemaire, Pierre & Proth, Jean-Marie & Queyranne, Maurice, 2009. "Minimizing the number of machines for minimum length schedules," European Journal of Operational Research, Elsevier, vol. 199(3), pages 702-705, December.
    9. Blazewicz, Jacek & Liu, Zhen, 2002. "Linear and quadratic algorithms for scheduling chains and opposite chains," European Journal of Operational Research, Elsevier, vol. 137(2), pages 248-264, March.
    10. Tianyu Wang & Odile Bellenguez-Morineau, 2019. "The Complexity of Parallel Machine Scheduling of Unit-Processing-Time Jobs under Level-Order Precedence Constraints," Journal of Scheduling, Springer, vol. 22(3), pages 263-269, June.
    11. Nait Tahar, Djamel & Yalaoui, Farouk & Chu, Chengbin & Amodeo, Lionel, 2006. "A linear programming approach for identical parallel machine scheduling with job splitting and sequence-dependent setup times," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 63-73, February.
    12. Markó Horváth & Tamás Kis, 2020. "Polyhedral results for position-based scheduling of chains on a single machine," Annals of Operations Research, Springer, vol. 284(1), pages 283-322, January.
    13. Jia, Beizhen & Tierney, Kevin & Reinhardt, Line Blander & Pahl, Julia, 2022. "Optimal dual cycling operations in roll-on roll-off terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    14. Joseph Y.‐T. Leung & Michael Pinedo, 2004. "A note on scheduling parallel machines subject to breakdown and repair," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(1), pages 60-71, February.
    15. Blazwicz, Jacek & Liu, Zhen, 1996. "Scheduling multiprocessor tasks with chain constraints," European Journal of Operational Research, Elsevier, vol. 94(2), pages 231-241, October.
    16. Philippe Chrétienne, 2016. "On scheduling with the non-idling constraint," Annals of Operations Research, Springer, vol. 240(1), pages 301-319, May.
    17. Liu Guiqing & Li Kai & Cheng Bayi, 2015. "Preemptive Scheduling with Controllable Processing Times on Parallel Machines," Journal of Systems Science and Information, De Gruyter, vol. 3(1), pages 68-76, February.
    18. Anurag Agarwal & Varghese S. Jacob & Hasan Pirkul, 2006. "An Improved Augmented Neural-Network Approach for Scheduling Problems," INFORMS Journal on Computing, INFORMS, vol. 18(1), pages 119-128, February.
    19. Hoogeveen, J. A. & Lenstra, J. K. & Veltman, B., 1996. "Preemptive scheduling in a two-stage multiprocessor flow shop is NP-hard," European Journal of Operational Research, Elsevier, vol. 89(1), pages 172-175, February.
    20. Yung-Chia Chang & Kuei-Hu Chang & Ching-Ping Zheng, 2022. "Application of a Non-Dominated Sorting Genetic Algorithm to Solve a Bi-Objective Scheduling Problem Regarding Printed Circuit Boards," Mathematics, MDPI, vol. 10(13), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jsched:v:24:y:2021:i:3:d:10.1007_s10951-021-00687-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.