IDEAS home Printed from https://ideas.repec.org/a/spr/jqecon/v19y2021i1d10.1007_s40953-020-00208-w.html
   My bibliography  Save this article

Using Non-parametric Count Model for Credit Scoring

Author

Listed:
  • Sami Mestiri

    (University of Monastir)

  • Abdeljelil Farhat

    (University of Monastir)

Abstract

The purpose of this paper is to apply count data models to predict the number of times a borrower pays late the amount of the credit. Poisson models and negative binomial distribution models, taking into account the observed heterogeneity, are generally used in situations where the dependent variable is discrete. Alternatively, we propose to use non parametric model where the relationship form between conditional mean and the explanatory variables is unknown. The empirical results found suggest that the nonparametric poisson model regression has the best prediction of the number of default payment.

Suggested Citation

  • Sami Mestiri & Abdeljelil Farhat, 2021. "Using Non-parametric Count Model for Credit Scoring," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(1), pages 39-49, March.
  • Handle: RePEc:spr:jqecon:v:19:y:2021:i:1:d:10.1007_s40953-020-00208-w
    DOI: 10.1007/s40953-020-00208-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40953-020-00208-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40953-020-00208-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hall, Bronwyn H & Griliches, Zvi & Hausman, Jerry A, 1986. "Patents and R and D: Is There a Lag?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 27(2), pages 265-283, June.
    2. Dionne, Georges & Artis, Manuel & Guillen, Montserrat, 1996. "Count data models for a credit scoring system," Journal of Empirical Finance, Elsevier, vol. 3(3), pages 303-325, September.
    3. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    4. Hinde, John & Demetrio, Clarice G. B., 1998. "Overdispersion: Models and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 27(2), pages 151-170, April.
    5. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yeh-Ching Low & Seng-Huat Ong, 2023. "Modelling of Loan Non-Payments with Count Distributions Arising from Non-Exponential Inter-Arrival Times," JRFM, MDPI, vol. 16(3), pages 1-14, February.
    2. Mestiri, Sami, 2024. "Financial applications of machine learning using R software," MPRA Paper 119998, University Library of Munich, Germany.
    3. Mestiri, Sami, 2023. "How to use machine learning in finance," MPRA Paper 120045, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Mainardi, 2003. "Testing convergence in life expectancies: count regression models on panel data," Prague Economic Papers, Prague University of Economics and Business, vol. 2003(4), pages 350-370.
    2. Christoph Grimpe & Roberto Patuelli, 2011. "Regional knowledge production in nanomaterials: a spatial filtering approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 46(3), pages 519-541, June.
    3. R. Winkelmann, 1998. "Count data models with selectivity," Econometric Reviews, Taylor & Francis Journals, vol. 17(4), pages 339-359.
    4. Kaiser, Ulrich & Kuhn, Johan M., 2012. "Long-run effects of public–private research joint ventures: The case of the Danish Innovation Consortia support scheme," Research Policy, Elsevier, vol. 41(5), pages 913-927.
    5. Crepon, Bruno & Duguet, Emmanuel, 1997. "Research and development, competition and innovation pseudo-maximum likelihood and simulated maximum likelihood methods applied to count data models with heterogeneity," Journal of Econometrics, Elsevier, vol. 79(2), pages 355-378, August.
    6. José Rodríguez-Avi & María José Olmo-Jiménez, 2017. "A regression model for overdispersed data without too many zeros," Statistical Papers, Springer, vol. 58(3), pages 749-773, September.
    7. William H. Greene & David A. Hensher, 2008. "Modeling Ordered Choices: A Primer and Recent Developments," Working Papers 08-26, New York University, Leonard N. Stern School of Business, Department of Economics.
    8. Erik Brouwer & Alfred Kleinknecht & Pierre Mohnen & Hans van Ophem, 2001. "R&D and Patents: Which Way Does the Causality Run?," CIRANO Working Papers 2001s-31, CIRANO.
    9. Katiane S. Conceição & Marinho G. Andrade & Francisco Louzada & Nalini Ravishanker, 2022. "Characterizations and generalizations of the negative binomial distribution," Computational Statistics, Springer, vol. 37(3), pages 1255-1286, July.
    10. Santos Silva, J.M.C. & Murteira, J.M.R., 2009. "Estimation of default probabilities using incomplete contracts data," Journal of Empirical Finance, Elsevier, vol. 16(3), pages 457-465, June.
    11. Jansakul, N. & Hinde, J. P., 2002. "Score Tests for Zero-Inflated Poisson Models," Computational Statistics & Data Analysis, Elsevier, vol. 40(1), pages 75-96, July.
    12. Maria Iannario, 2015. "Detecting latent components in ordinal data with overdispersion by means of a mixture distribution," Quality & Quantity: International Journal of Methodology, Springer, vol. 49(3), pages 977-987, May.
    13. Boncinelli, Fabio & Bartolini, Fabio & Casini, Leonardo, 2018. "Structural factors of labour allocation for farm diversification activities," Land Use Policy, Elsevier, vol. 71(C), pages 204-212.
    14. Florent Silve & Alexander Plekhanov, 2018. "Institutions, innovation and growth : Evidence from industry data," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 26(3), pages 335-362, July.
    15. E. C. Mamatzakis, 2010. "The contribution of the publicly-funded R&D capital to productivity growth and an application to the Greek food and beverages industry," International Review of Applied Economics, Taylor & Francis Journals, vol. 24(4), pages 483-494.
    16. Kan, Kamhon & Fu, Tsu-Tan, 1997. "Analysis of Housewives' Grocery Shopping Behavior in Taiwan: An Application of the Poisson Switching Regression," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 29(2), pages 397-407, December.
    17. Rajeev K. Goel, 2023. "Seek foreign funds or technology? Relative impacts of different spillover modes on innovation," The Journal of Technology Transfer, Springer, vol. 48(4), pages 1466-1488, August.
    18. Silva João M. C. Santos & Tenreyro Silvana & Windmeijer Frank, 2015. "Testing Competing Models for Non-negative Data with Many Zeros," Journal of Econometric Methods, De Gruyter, vol. 4(1), pages 29-46, January.
    19. Bilgic, Abdulbaki & Florkowski, Wojciech J., 2003. "Truncated-At-Zero Count Data Models With Partial Observability: An Application To The Freshwater Fishing Demand In The Southeastern U.S," 2003 Annual Meeting, February 1-5, 2003, Mobile, Alabama 35185, Southern Agricultural Economics Association.
    20. Tony Vangeneugden & Geert Molenberghs & Geert Verbeke & Clarice G.B. Dem�trio, 2011. "Marginal correlation from an extended random-effects model for repeated and overdispersed counts," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(2), pages 215-232, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jqecon:v:19:y:2021:i:1:d:10.1007_s40953-020-00208-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.