IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2001s-31.html
   My bibliography  Save this paper

R&D and Patents: Which Way Does the Causality Run?

Author

Listed:
  • Erik Brouwer
  • Alfred Kleinknecht
  • Pierre Mohnen
  • Hans van Ophem

Abstract

From cross-sectional data of 460 firms that responded to both the 1988 and the 1992 Dutch innovation surveys we have reexamined the causality direction between R&D and patents, using data on contemporaneous and four-year lagged patent applications and R&D expenditures. The two equations have been estimated jointly assuming a bivariate conditional distribution between the two variables, one being discrete and the other one continuous. We have experimented with different specifications of the count data for patent applications. We find that patents Granger-cause R&D in all specifications. One additional patent increases R&D four years later by 7.5%. The reverse causality from R&D to patents vanishes as soon as we depart in one way or another from the simple Poisson specification of patent counts. À partir de données transversales de 460 entreprises néerlandaises ayant répondu aux enquêtes innovation de 1988 et 1992, nous réexaminons le sens de la causalité entre la R-D et les brevets. Les deux équations de comportement ont été estimées simultanément en supposant une distribution bivariée conditionnelle entre ces deux variables, dont l'une est discrète et l'autre continue. Nous avons essayé différentes spécifications pour les données de comptage sur les brevets. Nous trouvons que la causalité à la Granger va des brevets à la R-D dans toutes les spécifications. Un brevet en plus augmente la R-D quatre ans plus tard de 7,5 %. La causalité dans l'autre sens disparaît dès que l'on s'écarte le moindrement d'une distribution Poisson des données de brevets.

Suggested Citation

  • Erik Brouwer & Alfred Kleinknecht & Pierre Mohnen & Hans van Ophem, 2001. "R&D and Patents: Which Way Does the Causality Run?," CIRANO Working Papers 2001s-31, CIRANO.
  • Handle: RePEc:cir:cirwor:2001s-31
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2001s-31.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. d'Aspremont, Claude & Jacquemin, Alexis, 1988. "Cooperative and Noncooperative R&D in Duopoly with Spillovers," American Economic Review, American Economic Association, vol. 78(5), pages 1133-1137, December.
    2. Wang, Peiming & Cockburn, Iain M & Puterman, Martin L, 1998. "Analysis of Patent Data--A Mixed-Poisson-Regression-Model Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(1), pages 27-41, January.
    3. repec:fth:harver:1473 is not listed on IDEAS
    4. Montalvo, Jose G, 1997. "GMM Estimation of Count-Panel-Data Models with Fixed Effects and Predetermined Instruments," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 82-89, January.
    5. Mullahy, John, 1986. "Specification and testing of some modified count data models," Journal of Econometrics, Elsevier, vol. 33(3), pages 341-365, December.
    6. Zvi Griliches & Bronwyn H. Hall & Ariel Pakes, 1988. "R&D, Patents, and Market Value Revisited: Is There Evidence of A SecondTechnological Opportunity Related Factor?," NBER Working Papers 2624, National Bureau of Economic Research, Inc.
    7. Zoltan J. Acs & David B. Audretsch, 1989. "Patents' Innovative Activity," Eastern Economic Journal, Eastern Economic Association, vol. 15(4), pages 373-376, Oct-Dec.
    8. Zvi Griliches, 1984. "Market Value, R&D, and Patents," NBER Chapters, in: R&D, Patents, and Productivity, pages 249-252, National Bureau of Economic Research, Inc.
    9. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    10. John Bound & Clint Cummins & Zvi Griliches & Bronwyn H. Hall & Adam B. Jaffe, 1984. "Who Does R&D and Who Patents?," NBER Chapters, in: R&D, Patents, and Productivity, pages 21-54, National Bureau of Economic Research, Inc.
    11. Lee, Lung-Fei, 1983. "Generalized Econometric Models with Selectivity," Econometrica, Econometric Society, vol. 51(2), pages 507-512, March.
    12. Zoltan J. Acs & David B. Audretsch, 1989. "Patents as a Measure of Innovative Activity," Kyklos, Wiley Blackwell, vol. 42(2), pages 171-180, August.
    13. repec:bla:kyklos:v:42:y:1989:i:2:p:171-80 is not listed on IDEAS
    14. Hall, Bronwyn H & Griliches, Zvi & Hausman, Jerry A, 1986. "Patents and R and D: Is There a Lag?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 27(2), pages 265-283, June.
    15. Zvi Griliches, 1984. "R&D, Patents, and Productivity," NBER Books, National Bureau of Economic Research, Inc, number gril84-1.
    16. Zvi Griliches, 1998. "Patent Statistics as Economic Indicators: A Survey," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 287-343, National Bureau of Economic Research, Inc.
    17. Georg Licht & Konrad Zoz, 1998. "Patents and R&D, An Econometric Investigation Using Applications for German, European and US Patents by German Companies," Annals of Economics and Statistics, GENES, issue 49-50, pages 329-360.
    18. van Ophem, Hans, 2000. "Modeling Selectivity in Count-Data Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(4), pages 503-511, October.
    19. Crepon, Bruno & Duguet, Emmanuel, 1997. "Estimating the Innovation Function from Patent Numbers: GMM on Count Panel Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 243-263, May-June.
    20. van Ophem, Hans, 1999. "A General Method To Estimate Correlated Discrete Random Variables," Econometric Theory, Cambridge University Press, vol. 15(2), pages 228-237, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Annita Nugent & Ho Fai Chan & Uwe Dulleck, 2022. "Government funding of university-industry collaboration: exploring the impact of targeted funding on university patent activity," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 29-73, January.
    2. Olfa Kammoun & Mohieddine Rahmouni, 2014. "Appropriation Instruments and Innovation Activities: Evidence from Tunisian Firms," International Journal of Innovation and Technology Management (IJITM), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1-22.
    3. Veronika Frigyesi & Patrice Laget & Mark Boden, 2019. "Exploitation of patent information in R&D output analysis for policymaking," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(3), pages 1717-1736, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiferaw Gurmu & Fidel Pérez-Sebastián, 2008. "Patents, R&D and lag effects: evidence from flexible methods for count panel data on manufacturing firms," Empirical Economics, Springer, vol. 35(3), pages 507-526, November.
    2. Hagedoorn, John & Wang, Ning, 2012. "Is there complementarity or substitutability between internal and external R&D strategies?," Research Policy, Elsevier, vol. 41(6), pages 1072-1083.
    3. Sunil Kanwar & Shailu Singh, 2016. "The Innovation-R&D Nexus- Evidence from the Indian Manufacturing Sector," Working papers 265, Centre for Development Economics, Delhi School of Economics.
    4. Kornelius Kraft & Jörg Stank & Ralf Dewenter, 2011. "Co-determination and innovation," Cambridge Journal of Economics, Cambridge Political Economy Society, vol. 35(1), pages 145-172.
    5. Hagedoorn, John & Cloodt, Myriam, 2003. "Measuring innovative performance: is there an advantage in using multiple indicators?," Research Policy, Elsevier, vol. 32(8), pages 1365-1379, September.
    6. Wang, Ning & Hagedoorn, John, 2014. "The lag structure of the relationship between patenting and internal R&D revisited," Research Policy, Elsevier, vol. 43(8), pages 1275-1285.
    7. Chadha, Alka, 2009. "TRIPs and patenting activity: Evidence from the Indian pharmaceutical industry," Economic Modelling, Elsevier, vol. 26(2), pages 499-505, March.
    8. Crepon, Bruno & Duguet, Emmanuel, 1997. "Research and development, competition and innovation pseudo-maximum likelihood and simulated maximum likelihood methods applied to count data models with heterogeneity," Journal of Econometrics, Elsevier, vol. 79(2), pages 355-378, August.
    9. William Greene, 2001. "Fixed and Random Effects in Nonlinear Models," Working Papers 01-01, New York University, Leonard N. Stern School of Business, Department of Economics.
    10. Cardinal, Laura B. & Opler, Tim C., 1995. "Corporate diversification and innovative efficiency an empirical study," Journal of Accounting and Economics, Elsevier, vol. 19(2-3), pages 365-381, April.
    11. Brouwer, Erik & Kleinknecht, Alfred, 1999. "Innovative output, and a firm's propensity to patent.: An exploration of CIS micro data," Research Policy, Elsevier, vol. 28(6), pages 615-624, August.
    12. Zoltan J. Acs & David B. Audretsch, 2005. "Entrepreneurship and Innovation," Papers on Entrepreneurship, Growth and Public Policy 2005-21, Max Planck Institute of Economics, Entrepreneurship, Growth and Public Policy Group.
    13. James Bessen & Robert M. Hunt, 2007. "An Empirical Look at Software Patents," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 16(1), pages 157-189, March.
    14. Blundell, Richard & Griffith, Rachel & Windmeijer, Frank, 2002. "Individual effects and dynamics in count data models," Journal of Econometrics, Elsevier, vol. 108(1), pages 113-131, May.
    15. Landon Kleis & Paul Chwelos & Ronald V. Ramirez & Iain Cockburn, 2012. "Information Technology and Intangible Output: The Impact of IT Investment on Innovation Productivity," Information Systems Research, INFORMS, vol. 23(1), pages 42-59, March.
    16. Choi, Mincheol & Lee, Chang-Yang, 2021. "Technological diversification and R&D productivity: The moderating effects of knowledge spillovers and core-technology competence," Technovation, Elsevier, vol. 104(C).
    17. Choi, Jin-Uk & Lee, Chang-Yang, 2022. "The differential effects of basic research on firm R&D productivity: The conditioning role of technological diversification," Technovation, Elsevier, vol. 118(C).
    18. Maria Luisa Mancusi, 2004. "International Spillovers and Absorptive Capacity: A cross-country, cross-sector analysis based on European patents and citations," STICERD - Economics of Industry Papers 35, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    19. Rentocchini, Francesco, 2011. "Sources and characteristics of software patents in the European Union: Some empirical considerations," Information Economics and Policy, Elsevier, vol. 23(1), pages 141-157, March.
    20. Li, Xibao, 2011. "Sources of External Technology, Absorptive Capacity, and Innovation Capability in Chinese State-Owned High-Tech Enterprises," World Development, Elsevier, vol. 39(7), pages 1240-1248, July.

    More about this item

    Keywords

    Innovation survey data; patents; R&D; count data; Enquêtes innovation; brevets; R-D; données de comptage;
    All these keywords.

    JEL classification:

    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • D21 - Microeconomics - - Production and Organizations - - - Firm Behavior: Theory

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2001s-31. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.