IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i12p2103-d450490.html
   My bibliography  Save this article

On the Construction of Some Deterministic and Stochastic Non-Local SIR Models

Author

Listed:
  • Giacomo Ascione

    (Dipartimento di Matematica e Applicazioni Renato Caccioppoli, Università degli Studi di Napoli Federico II, I-80126 Naples, Italy)

Abstract

Fractional-order epidemic models have become widely studied in the literature. Here, we consider the generalization of a simple S I R model in the context of generalized fractional calculus and we study the main features of such model. Moreover, we construct semi-Markov stochastic epidemic models by using time changed continuous time Markov chains, where the parent process is the stochastic analog of a simple S I R epidemic. In particular, we show that, differently from what happens in the classic case, the deterministic model does not coincide with the large population limit of the stochastic one. This loss of fluid limit is then stressed in terms of numerical examples.

Suggested Citation

  • Giacomo Ascione, 2020. "On the Construction of Some Deterministic and Stochastic Non-Local SIR Models," Mathematics, MDPI, vol. 8(12), pages 1-28, November.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2103-:d:450490
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/12/2103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/12/2103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erhan Cinlar, 1974. "Markov Additive Processes and Semi-Regeneration," Discussion Papers 118, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    2. Anatoly N. Kochubei & Yuri Kondratiev, 2019. "Growth Equation of the General Fractional Calculus," Mathematics, MDPI, vol. 7(7), pages 1-8, July.
    3. Buonomo, Bruno & Della Marca, Rossella, 2019. "Oscillations and hysteresis in an epidemic model with information-dependent imperfect vaccination," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 97-114.
    4. Meerschaert, Mark M. & Scheffler, Hans-Peter, 2008. "Triangular array limits for continuous time random walks," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1606-1633, September.
    5. Reinert, Gesine, 1992. "A threshold theorem for the general stochastic epidemic via a discrete approach," Statistics & Probability Letters, Elsevier, vol. 14(2), pages 85-90, May.
    6. Alves, Samuel B. & de Oliveira, Gilson F. & de Oliveira, Luimar C. & Passerat de Silans, Thierry & Chevrollier, Martine & Oriá, Marcos & de S. Cavalcante, Hugo L.D., 2016. "Characterization of diffusion processes: Normal and anomalous regimes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 392-401.
    7. Meerschaert, Mark M. & Toaldo, Bruno, 2019. "Relaxation patterns and semi-Markov dynamics," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2850-2879.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giacomo Ascione & Nikolai Leonenko & Enrica Pirozzi, 2022. "Non-local Solvable Birth–Death Processes," Journal of Theoretical Probability, Springer, vol. 35(2), pages 1284-1323, June.
    2. Giacomo Ascione & Enrica Pirozzi, 2021. "Generalized Fractional Calculus for Gompertz-Type Models," Mathematics, MDPI, vol. 9(17), pages 1-32, September.
    3. Giacomo Ascione & Bruno Toaldo, 2019. "A Semi-Markov Leaky Integrate-and-Fire Model," Mathematics, MDPI, vol. 7(11), pages 1-24, October.
    4. Beghin, Luisa & Macci, Claudio & Ricciuti, Costantino, 2020. "Random time-change with inverses of multivariate subordinators: Governing equations and fractional dynamics," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6364-6387.
    5. Yuri Luchko, 2022. "Fractional Differential Equations with the General Fractional Derivatives of Arbitrary Order in the Riemann–Liouville Sense," Mathematics, MDPI, vol. 10(6), pages 1-24, March.
    6. Fernandez-Anaya, G. & Valdes-Parada, F.J. & Alvarez-Ramirez, J., 2011. "On generalized fractional Cattaneo’s equations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4198-4202.
    7. P. Escalona & F. Ordóñez & I. Kauak, 2017. "Critical level rationing in inventory systems with continuously distributed demand," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(1), pages 273-301, January.
    8. Magdziarz, M. & Scheffler, H.P. & Straka, P. & Zebrowski, P., 2015. "Limit theorems and governing equations for Lévy walks," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4021-4038.
    9. Francesco Iafrate & Costantino Ricciuti, 2024. "Some Families of Random Fields Related to Multiparameter Lévy Processes," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3055-3088, November.
    10. Kumar, A. & Vellaisamy, P., 2015. "Inverse tempered stable subordinators," Statistics & Probability Letters, Elsevier, vol. 103(C), pages 134-141.
    11. Fatima Sulayman & Farah Aini Abdullah & Mohd Hafiz Mohd, 2021. "An SVEIRE Model of Tuberculosis to Assess the Effect of an Imperfect Vaccine and Other Exogenous Factors," Mathematics, MDPI, vol. 9(4), pages 1-23, February.
    12. D’Ovidio, Mirko, 2012. "From Sturm–Liouville problems to fractional and anomalous diffusions," Stochastic Processes and their Applications, Elsevier, vol. 122(10), pages 3513-3544.
    13. Mohammed Al-Refai & Yuri Luchko, 2023. "The General Fractional Integrals and Derivatives on a Finite Interval," Mathematics, MDPI, vol. 11(4), pages 1-13, February.
    14. Vasily E. Tarasov, 2023. "General Fractional Calculus in Multi-Dimensional Space: Riesz Form," Mathematics, MDPI, vol. 11(7), pages 1-20, March.
    15. Kerger, Phillip & Kobayashi, Kei, 2020. "Parameter estimation for one-sided heavy-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 164(C).
    16. Kondratiev, Yuri & da Silva, José L., 2023. "Compound Poisson processes: Potentials, Green measures and random times," Statistics & Probability Letters, Elsevier, vol. 197(C).
    17. Meerschaert, Mark M. & Nane, Erkan & Xiao, Yimin, 2013. "Fractal dimension results for continuous time random walks," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1083-1093.
    18. Gupta, Neha & Kumar, Arun, 2022. "Inverse tempered stable subordinators and related processes with Mellin transform," Statistics & Probability Letters, Elsevier, vol. 186(C).
    19. Vasily E. Tarasov, 2023. "Multi-Kernel General Fractional Calculus of Arbitrary Order," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
    20. Francisco Javier Martín-Pasquín & Alexander N. Pisarchik, 2021. "Brownian Behavior in Coupled Chaotic Oscillators," Mathematics, MDPI, vol. 9(19), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:12:p:2103-:d:450490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.