IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v37y2024i3d10.1007_s10959-023-01277-2.html
   My bibliography  Save this article

The Distributions of the Mean of Random Vectors with Fixed Marginal Distribution

Author

Listed:
  • Andrzej Komisarski

    (University of Łódź)

  • Jacques Labuschagne

    (University of Łódź)

Abstract

Using recent results concerning non-uniqueness of the center of the mix for completely mixable probability distributions, we obtain the following result: For each $$d\in {\mathbb {N}}$$ d ∈ N and each non-empty bounded Borel set $$B\subset {\mathbb {R}}^d$$ B ⊂ R d , there exists a d-dimensional probability distribution $$\varvec{\mu }$$ μ satisfying the following: For each $$n\ge 3$$ n ≥ 3 and each probability distribution $$\varvec{\nu }$$ ν on B, there exist d-dimensional random vectors $${\textbf{X}}_{\varvec{\nu },1},{\textbf{X}}_{\varvec{\nu },2},\dots ,{\textbf{X}}_{\varvec{\nu },n}$$ X ν , 1 , X ν , 2 , ⋯ , X ν , n such that $$\frac{1}{n}({\textbf{X}}_{\varvec{\nu },1}+{\textbf{X}}_{\varvec{\nu },2}+\dots +{\textbf{X}}_{\varvec{\nu },n})\sim \varvec{\nu }$$ 1 n ( X ν , 1 + X ν , 2 + ⋯ + X ν , n ) ∼ ν and $${\textbf{X}}_{\varvec{\nu },i}\sim \varvec{\mu }$$ X ν , i ∼ μ for $$i=1,2,\dots ,n$$ i = 1 , 2 , ⋯ , n . We also show that the assumption regarding the boundedness of the set B cannot be completely omitted, but it can be substantially weakened.

Suggested Citation

  • Andrzej Komisarski & Jacques Labuschagne, 2024. "The Distributions of the Mean of Random Vectors with Fixed Marginal Distribution," Journal of Theoretical Probability, Springer, vol. 37(3), pages 2121-2129, September.
  • Handle: RePEc:spr:jotpro:v:37:y:2024:i:3:d:10.1007_s10959-023-01277-2
    DOI: 10.1007/s10959-023-01277-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-023-01277-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-023-01277-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Puccetti, Giovanni & Wang, Bin & Wang, Ruodu, 2013. "Complete mixability and asymptotic equivalence of worst-possible VaR and ES estimates," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 821-828.
    2. Puccetti Giovanni & Rüschendorf Ludger, 2012. "Bounds for joint portfolios of dependent risks," Statistics & Risk Modeling, De Gruyter, vol. 29(2), pages 107-132, June.
    3. Giovanni Puccetti & Pietro Rigo & Bin Wang & Ruodu Wang, 2019. "Centers of probability measures without the mean," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1482-1501, September.
    4. Dhaene, Jan & Denuit, Michel, 1999. "The safest dependence structure among risks," Insurance: Mathematics and Economics, Elsevier, vol. 25(1), pages 11-21, September.
    5. Wang, Bin & Wang, Ruodu, 2011. "The complete mixability and convex minimization problems with monotone marginal densities," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1344-1360, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takaaki Koike & Liyuan Lin & Ruodu Wang, 2022. "Joint mixability and notions of negative dependence," Papers 2204.11438, arXiv.org, revised Jan 2024.
    2. Bin Wang & Ruodu Wang, 2016. "Joint Mixability," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 808-826, August.
    3. Chaoubi, Ihsan & Cossette, Hélène & Gadoury, Simon-Pierre & Marceau, Etienne, 2020. "On sums of two counter-monotonic risks," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 47-60.
    4. Carole Bernard & Ludger Rüschendorf & Steven Vanduffel & Ruodu Wang, 2017. "Risk bounds for factor models," Finance and Stochastics, Springer, vol. 21(3), pages 631-659, July.
    5. Cheung, Ka Chun & Lo, Ambrose, 2013. "General lower bounds on convex functionals of aggregate sums," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 884-896.
    6. Roberto Fontana & Elisa Luciano & Patrizia Semeraro, 2021. "Model risk in credit risk," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 176-202, January.
    7. Bernard Carole & Vanduffel Steven, 2015. "Quantile of a Mixture with Application to Model Risk Assessment," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-10, October.
    8. Edgars Jakobsons & Steven Vanduffel, 2015. "Dependence Uncertainty Bounds for the Expectile of a Portfolio," Risks, MDPI, vol. 3(4), pages 1-25, December.
    9. Wang, Bin & Wang, Ruodu, 2015. "Extreme negative dependence and risk aggregation," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 12-25.
    10. Bernard, Carole & Kazzi, Rodrigue & Vanduffel, Steven, 2020. "Range Value-at-Risk bounds for unimodal distributions under partial information," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 9-24.
    11. Lauzier, Jean-Gabriel & Lin, Liyuan & Wang, Ruodu, 2023. "Pairwise counter-monotonicity," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 279-287.
    12. Yuyu Chen & Ruodu Wang, 2024. "Infinite-mean models in risk management: Discussions and recent advances," Papers 2408.08678, arXiv.org, revised Oct 2024.
    13. Paul Embrechts & Bin Wang & Ruodu Wang, 2015. "Aggregation-robustness and model uncertainty of regulatory risk measures," Finance and Stochastics, Springer, vol. 19(4), pages 763-790, October.
    14. Cheung, Ka Chun & Lo, Ambrose, 2014. "Characterizing mutual exclusivity as the strongest negative multivariate dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 180-190.
    15. Embrechts, Paul & Puccetti, Giovanni & Rüschendorf, Ludger, 2013. "Model uncertainty and VaR aggregation," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 2750-2764.
    16. Jae Youn Ahn, 2015. "Negative Dependence Concept in Copulas and the Marginal Free Herd Behavior Index," Papers 1503.03180, arXiv.org.
    17. Mao, Tiantian & Wang, Ruodu, 2015. "On aggregation sets and lower-convex sets," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 170-181.
    18. Bernard, Carole & Vanduffel, Steven, 2015. "A new approach to assessing model risk in high dimensions," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 166-178.
    19. Bignozzi, Valeria & Puccetti, Giovanni & Rüschendorf, Ludger, 2015. "Reducing model risk via positive and negative dependence assumptions," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 17-26.
    20. Chuancun Yin & Dan Zhu, 2016. "Sharp Convex Bounds on the Aggregate Sums–An Alternative Proof," Risks, MDPI, vol. 4(4), pages 1-8, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:37:y:2024:i:3:d:10.1007_s10959-023-01277-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.