IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v36y2023i2d10.1007_s10959-022-01201-0.html
   My bibliography  Save this article

From Irrevocably Modulated Filtrations to Dynamical Equations Over Random Networks

Author

Listed:
  • Levent Ali Mengütürk

    (University College London)

Abstract

We develop a probabilistic information framework via what we call irrevocably modulated filtrations produced by non-invertible matrix-valued jump processes acting on multivariate observation processes carrying noisy signals. Under certain conditions, we provide dynamical representations of conditional expectation martingales in systems where signals from randomly changing information networks may get irreversibly amalgamated or switched-off over random time horizons. We apply the framework to scenarios where the flow of information goes through multiple modulations before reaching observing agents. This leads us to introduce a Lie-type operator as a morphism between spaces of sigma-algebras, which quantifies information discrepancy caused by different modulation sequences. As another example, we show how random graphs can be used to generate irrevocably modulated filtrations that lead to pure noise scenarios. Finally, we construct systems that exhibit gradual decay of additional sources of information through the choice of spectral radii of the modulators.

Suggested Citation

  • Levent Ali Mengütürk, 2023. "From Irrevocably Modulated Filtrations to Dynamical Equations Over Random Networks," Journal of Theoretical Probability, Springer, vol. 36(2), pages 845-875, June.
  • Handle: RePEc:spr:jotpro:v:36:y:2023:i:2:d:10.1007_s10959-022-01201-0
    DOI: 10.1007/s10959-022-01201-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-022-01201-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-022-01201-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hoyle, Edward & Mengütürk, Levent Ali, 2013. "Archimedean survival processes," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 1-15.
    2. Edward Hoyle & Levent Ali Menguturk, 2020. "Generalised Liouville Processes and their Properties," Papers 2003.11312, arXiv.org, revised May 2020.
    3. Sottinen, Tommi & Yazigi, Adil, 2014. "Generalized Gaussian bridges," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 3084-3105.
    4. Hoyle, Edward & Hughston, Lane P. & Macrina, Andrea, 2011. "Lévy random bridges and the modelling of financial information," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 856-884, April.
    5. Dorje C. Brody & Lane P. Hughston & Andrea Macrina, 2008. "Information-Based Asset Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(01), pages 107-142.
    6. Dorje C Brody, 2019. "Modelling election dynamics and the impact of disinformation," Papers 1904.12614, arXiv.org, revised Sep 2019.
    7. Edward Hoyle & Andrea Macrina & Levent Ali Mengütürk, 2020. "Modulated Information Flows In Financial Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 23(04), pages 1-35, June.
    8. Edward Hoyle & Andrea Macrina & Levent A. Menguturk, 2017. "Modulated Information Flows in Financial Markets," Papers 1708.06948, arXiv.org, revised May 2020.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mengütürk, Levent Ali, 2018. "Gaussian random bridges and a geometric model for information equilibrium," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 465-483.
    2. Edward Hoyle & Levent Ali Menguturk, 2020. "Generalised Liouville Processes and their Properties," Papers 2003.11312, arXiv.org, revised May 2020.
    3. Hoyle, Edward & Mengütürk, Levent Ali, 2013. "Archimedean survival processes," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 1-15.
    4. Tommi Sottinen & Lauri Viitasaari, 2018. "Parameter estimation for the Langevin equation with stationary-increment Gaussian noise," Statistical Inference for Stochastic Processes, Springer, vol. 21(3), pages 569-601, October.
    5. George Bouzianis & Lane P. Hughston & Leandro S'anchez-Betancourt, 2022. "Information-Based Trading," Papers 2201.08875, arXiv.org, revised Jan 2024.
    6. Esposito, Nicola & Mele, Agostino & Castanier, Bruno & GIORGIO, Massimiliano, 2023. "A hybrid maintenance policy for a deteriorating unit in the presence of three forms of variability," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Luke M. Bennett & Wei Hu, 2023. "Filtration enlargement‐based time series forecast in view of insider trading," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 112-140, February.
    8. Tommi Sottinen & Lauri Viitasaari, 2019. "Prediction Law of Mixed Gaussian Volterra Processes," Papers 1904.09799, arXiv.org.
    9. William T. Shaw & Marcus Schofield, 2015. "A model of returns for the post-credit-crunch reality: hybrid Brownian motion with price feedback," Quantitative Finance, Taylor & Francis Journals, vol. 15(6), pages 975-998, June.
    10. Ulrich Horst & Michael Kupper & Andrea Macrina & Christoph Mainberger, 2013. "Continuous equilibrium in affine and information-based capital asset pricing models," Annals of Finance, Springer, vol. 9(4), pages 725-755, November.
    11. Mohammed Louriki, 2019. "Brownian bridge with random length and pinning point for modelling of financial information," Papers 1907.08047, arXiv.org, revised Dec 2021.
    12. Lane P. Hughston & Leandro S'anchez-Betancourt, 2020. "Pricing with Variance Gamma Information," Papers 2003.07967, arXiv.org, revised Sep 2020.
    13. Maleki Almani, Hamidreza & Shokrollahi, Foad & Sottinen, Tommi, 2024. "Prediction of Gaussian Volterra processes with compound Poisson jumps," Statistics & Probability Letters, Elsevier, vol. 208(C).
    14. Sottinen, Tommi & Yazigi, Adil, 2014. "Generalized Gaussian bridges," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 3084-3105.
    15. Giovanni Conforti & Tetiana Kosenkova & Sylvie Rœlly, 2019. "Conditioned Point Processes with Application to Lévy Bridges," Journal of Theoretical Probability, Springer, vol. 32(4), pages 2111-2134, December.
    16. Lane P. Hughston & Leandro Sánchez-Betancourt, 2020. "Pricing with Variance Gamma Information," Risks, MDPI, vol. 8(4), pages 1-22, October.
    17. Abel Azze & Bernardo D'Auria & Eduardo Garc'ia-Portugu'es, 2022. "Optimal stopping of Gauss-Markov bridges," Papers 2211.05835, arXiv.org, revised Jul 2024.
    18. Hoyle, Edward & Hughston, Lane P. & Macrina, Andrea, 2011. "Lévy random bridges and the modelling of financial information," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 856-884, April.
    19. Bahman Angoshtari & Tim Leung, 2019. "Optimal dynamic basis trading," Annals of Finance, Springer, vol. 15(3), pages 307-335, September.
    20. Pavel V. Gapeev & Monique Jeanblanc, 2019. "Defaultable Claims In Switching Models With Partial Information," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:36:y:2023:i:2:d:10.1007_s10959-022-01201-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.