IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v34y1990i2p275-289.html
   My bibliography  Save this article

A central limit theorem for generalized multilinear forms

Author

Listed:
  • de Jong, Peter

Abstract

Let X1, ..., Xn be independent random variables and define for each finite subset I [subset of] {1, ..., n} the [sigma]-algebra = [sigma]{Xi : i [epsilon] I}. In this paper -measurable random variables WI are considered, subject to the centering condition E(WI [short parallel] ) = 0 a.s. unless I [subset of] J. A central limit theorem is proven for d-homogeneous sums W(n) = [Sigma][short parallel]I[short parallel] = dWI, with var W(n) = 1, where the summation extends over all (nd) subsets I [subset of] {1, ..., n} of size [short parallel]I[short parallel] = d, under the condition that the normed fourth moment of W(n) tends to 3. Under some extra conditions the condition is also necessary.

Suggested Citation

  • de Jong, Peter, 1990. "A central limit theorem for generalized multilinear forms," Journal of Multivariate Analysis, Elsevier, vol. 34(2), pages 275-289, August.
  • Handle: RePEc:eee:jmvana:v:34:y:1990:i:2:p:275-289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0047-259X(90)90040-O
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kasprzak, Mikołaj J., 2020. "Stein’s method for multivariate Brownian approximations of sums under dependence," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4927-4967.
    2. Yuta Koike, 2023. "High-Dimensional Central Limit Theorems for Homogeneous Sums," Journal of Theoretical Probability, Springer, vol. 36(1), pages 1-45, March.
    3. Fan, Yanqin & Ullah, Aman, 1999. "Asymptotic Normality of a Combined Regression Estimator," Journal of Multivariate Analysis, Elsevier, vol. 71(2), pages 191-240, November.
    4. Konrad Menzel, 2021. "Bootstrap With Cluster‐Dependence in Two or More Dimensions," Econometrica, Econometric Society, vol. 89(5), pages 2143-2188, September.
    5. Gao, Jiti & Hong, Yongmiao, 2007. "Central limit theorems for weighted quadratic forms of dependent processes with applications in specification testing," MPRA Paper 11977, University Library of Munich, Germany, revised Dec 2007.
    6. Konrad Menzel, 2021. "Central Limit Theory for Models of Strategic Network Formation," Papers 2111.01678, arXiv.org.
    7. Robins, James M. & Li, Lingling & Tchetgen, Eric Tchetgen & van der Vaart, Aad, 2016. "Asymptotic normality of quadratic estimators," Stochastic Processes and their Applications, Elsevier, vol. 126(12), pages 3733-3759.
    8. Ivan Nourdin & Giovanni Peccati & Xiaochuan Yang, 2022. "Multivariate Normal Approximation on the Wiener Space: New Bounds in the Convex Distance," Journal of Theoretical Probability, Springer, vol. 35(3), pages 2020-2037, September.
    9. Barton, N.H. & Etheridge, A.M. & Véber, A., 2017. "The infinitesimal model: Definition, derivation, and implications," Theoretical Population Biology, Elsevier, vol. 118(C), pages 50-73.
    10. Ivan Nourdin & Giovanni Peccati & Guillaume Poly & Rosaria Simone, 2016. "Classical and Free Fourth Moment Theorems: Universality and Thresholds," Journal of Theoretical Probability, Springer, vol. 29(2), pages 653-680, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:34:y:1990:i:2:p:275-289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.