IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v145y2022icp308-334.html
   My bibliography  Save this article

Multi-dimensional normal approximation of heavy-tailed moving averages

Author

Listed:
  • Azmoodeh, Ehsan
  • Ljungdahl, Mathias Mørck
  • Thäle, Christoph

Abstract

In this paper we extend the refined second-order Poincaré inequality for Poisson functionals from a one-dimensional to a multi-dimensional setting. Its proof is based on a multivariate version of the Malliavin–Stein method for normal approximation on Poisson spaces. We also present an application to partial sums of vector-valued functionals of heavy-tailed moving averages. The extension allows a functional with multivariate arguments, i.e. multiple moving averages and also multivariate values of the functional. Such a set-up has previously not been explored in the framework of stable moving average processes. It can potentially capture probabilistic properties which cannot be described solely by the one-dimensional marginals, but instead require the joint distribution.

Suggested Citation

  • Azmoodeh, Ehsan & Ljungdahl, Mathias Mørck & Thäle, Christoph, 2022. "Multi-dimensional normal approximation of heavy-tailed moving averages," Stochastic Processes and their Applications, Elsevier, vol. 145(C), pages 308-334.
  • Handle: RePEc:eee:spapps:v:145:y:2022:i:c:p:308-334
    DOI: 10.1016/j.spa.2021.11.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414921002003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2021.11.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mathias Mørck Ljungdahl & Mark Podolskij, 2020. "A minimal contrast estimator for the linear fractional stable motion," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 381-413, July.
    2. Nualart,David & Nualart,Eulalia, 2018. "Introduction to Malliavin Calculus," Cambridge Books, Cambridge University Press, number 9781107039124, October.
    3. Nualart,David & Nualart,Eulalia, 2018. "Introduction to Malliavin Calculus," Cambridge Books, Cambridge University Press, number 9781107611986, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nourdin, Ivan & Nualart, David & Peccati, Giovanni, 2021. "The Breuer–Major theorem in total variation: Improved rates under minimal regularity," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 1-20.
    2. Mauricio Elizalde & Carlos Escudero & Tomoyuki Ichiba, 2022. "Optimal investment with insider information using Skorokhod & Russo-Vallois integration," Papers 2211.07471, arXiv.org.
    3. Elisa Al`os & Eulalia Nualart & Makar Pravosud, 2023. "On the implied volatility of Inverse options under stochastic volatility models," Papers 2401.00539, arXiv.org, revised Sep 2024.
    4. Ruzong Fan & Hong-Bin Fang, 2022. "Stochastic functional linear models and Malliavin calculus," Computational Statistics, Springer, vol. 37(2), pages 591-611, April.
    5. Fenge Chen & Bing Li & Xingchun Peng, 2022. "Portfolio Selection and Risk Control for an Insurer With Uncertain Time Horizon and Partial Information in an Anticipating Environment," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 635-659, June.
    6. Elisa Al`os & Eulalia Nualart & Makar Pravosud, 2022. "On the implied volatility of Asian options under stochastic volatility models," Papers 2208.01353, arXiv.org, revised Mar 2024.
    7. Elisa Al`os & Eulalia Nualart & Makar Pravosud, 2023. "On the implied volatility of European and Asian call options under the stochastic volatility Bachelier model," Papers 2308.15341, arXiv.org, revised Sep 2024.
    8. Chen, Xingzhi & Xu, Xin & Tian, Baodan & Li, Dong & Yang, Dan, 2022. "Dynamics of a stochastic delayed chemostat model with nutrient storage and Lévy jumps," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    9. Kohatsu-Higa, Arturo & Nualart, Eulalia & Tran, Ngoc Khue, 2022. "Density estimates for jump diffusion processes," Applied Mathematics and Computation, Elsevier, vol. 420(C).
    10. Jie Xiong & Zuo quan Xu & Jiayu Zheng, 2019. "Mean-variance portfolio selection under partial information with drift uncertainty," Papers 1901.03030, arXiv.org, revised Oct 2020.
    11. Tsubasa Nishimura & Kenji Yasutomi & Tomooki Yuasa, 2022. "Higher-Order Error Estimates of the Discrete-Time Clark–Ocone Formula," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2518-2539, December.
    12. Hiroaki Hata & Nien-Lin Liu & Kazuhiro Yasuda, 2022. "Expressions of forward starting option price in Hull–White stochastic volatility model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 45(1), pages 101-135, June.
    13. Ji Huang, 2023. "A Probabilistic Solution to High-Dimensional Continuous-Time Macro and Finance Models," CESifo Working Paper Series 10600, CESifo.
    14. Nourdin, Ivan & Pu, Fei, 2022. "Gaussian fluctuation for Gaussian Wishart matrices of overall correlation," Statistics & Probability Letters, Elsevier, vol. 181(C).
    15. Hyungbin Park, 2021. "Influence of risk tolerance on long-term investments: A Malliavin calculus approach," Papers 2104.00911, arXiv.org.
    16. Ivan Nourdin & Giovanni Peccati & Xiaochuan Yang, 2022. "Multivariate Normal Approximation on the Wiener Space: New Bounds in the Convex Distance," Journal of Theoretical Probability, Springer, vol. 35(3), pages 2020-2037, September.
    17. Ehsan Azmoodeh & Yuliya Mishura & Farzad Sabzikar, 2022. "How Does Tempering Affect the Local and Global Properties of Fractional Brownian Motion?," Journal of Theoretical Probability, Springer, vol. 35(1), pages 484-527, March.
    18. Ernst, Philip A. & Huang, Dongzhou & Viens, Frederi G., 2023. "Yule’s “nonsense correlation” for Gaussian random walks," Stochastic Processes and their Applications, Elsevier, vol. 162(C), pages 423-455.
    19. Levental, S. & Vellaisamy, P., 2023. "Formulas for the divergence operator in isonormal Gaussian space," Statistics & Probability Letters, Elsevier, vol. 194(C).
    20. Ayub Ahmadi & Mahdieh Tahmasebi, 2024. "Pricing and delta computation in jump-diffusion models with stochastic intensity by Malliavin calculus," Papers 2405.00473, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:145:y:2022:i:c:p:308-334. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.